Discrete Optimization for Ordered Weak Proximal Kannan Contractions

Open access

Abstract

Let us consider a non-self mapping T : A → B, where A and B are two nonempty subsets of a partially ordered set that is equipped a metric. A best proximity point x⋆ for such a mapping T is a point such that d(x⋆, T x⋆) = dist(A,B). In this work, we provide different existence results of best proximity points and so, we establish some new fixed point theorems in the setting of partially ordered set.

References

  • 1. Abkar, A.; Gabeleh, M. - Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theory Appl., 151 (2011), 418-424.

  • 2. Abkar, A.; Gabeleh, M. - Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl., 153 (2012), 298-305.

  • 3. Al-Thagafi, M.A.; Shahzad, N. - Convergence and existence results for best proxi- mity points, Nonlinear Anal., 70 (2009), 3665-3671.

  • 4. Amini-Harandi, A. - Best proximity point theorems for cyclic strongly quasi- contraction mappings, J. Global Optim., 56 (2013), 1667-1674.

  • 5. Di Bari, C.; Suzuki, T.; Vetro, C. - Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal., 69 (2008), 3790-3794.

  • 6. Eldred, A.A.; Veeramani, P. - Existence and convergence of best proximity points, J. Math. Anal. Appl., 323 (2006), 1001-1006.

  • 7. Espínola, R. - A new approach to relatively nonexpansive mappings, Proc. Amer. Math. Soc., 136 (2008), 1987-1995.

  • 8. Gabeleh, M. - Global optimal solutions of non-self mappings, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 75 (2013), 67-74.

  • 9. Kannan, R. - Some results on fixed points. II, Amer. Math. Monthly, 76 (1969), 405-408.

  • 10. Khamsi, M.A.; Kirk, W.A. - An introduction to metric spaces and fixed point theory, Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001.

  • 11. Kikkawa, M.; Suzuki, T. - Some similarity between contractions and Kannan map- pings, Fixed Point Theory Appl., 2008, Art. ID 649749, 8 pp.

  • 12. Nieto, J.J.; Rodr´ıguez-L´opez, R. - Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2005), 223-239 (2006).

  • 13. Petric, M.A. - Best proximity point theorems for weak cyclic Kannan contractions, Filomat, 25 (2011), 145-154.

  • 14. Sadiq Basha, S. - Discrete optimization in partially ordered sets, J. Global Optim., 54 (2012), 511-517.

  • 15. Sanhan, W.; Mongkolkeha, C.; Kumam, P. - Generalized proximal -contraction mappings and best proximity points, Abstr. Appl. Anal., 2012, Art. ID 896912, 19 pp.

Annals of the Alexandru Ioan Cuza University - Mathematics

The Journal of "Alexandru Ioan Cuza" University from Iasi

Journal Information


CiteScore 2016: 0.34

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.488

Mathematical Citation Quotient (MCQ) 2015: 0.10

Target Group

researchers in all fields of mathematics and mechanics

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 26 26 18
PDF Downloads 8 8 6