Antioxidant defences of Norway spruce bark against bark beetles and its associated blue-stain fungus

Open access

Abstract

Bark beetles and their fungal associates are integral parts of forest ecosystems, the European spruce bark beetle (Ips typographus Linnaeus, 1758) and the associated pathogenic blue stain fungus Ceratocystis polonica (SIEM.) C. MOREAU, are the most devastating pests regarding Norway spruce [Picea abies (L.) H. KARST.]. Bark beetles commonly inhabit weakened and felled trees as well as vital trees. They cause physiological disorders in trees by destroying a phloem and cambium or interrupt the transpiration -ow in the xylem. Conifers have a wide range of effective defence mechanisms that are based on the inner bark anatomy and physiological state of the tree. The basic function of bark defences is to protect the nutrient-and energy-rich phloem, the vital meristematic region of the vascular cambium, and the transpiration -ow in the sapwood. The main area of defence mechanisms is secondary phloem, which is physically and chemically protected by polyphenolic parenchyma (PP) cells, sclerenchyma, calcium oxalate crystals and resin ducts. Conifer trunk pest resistance includes constitutive, inducible defences and acquired resistance. Both constitutive and inducible defences may deter beetle invasion, impede fungal growth and close entrance wounds. During a successful attack, systemic acquired resistance (SAR) becomes effective and represents a third defence strategy. It gradually develops throughout the plant and provides a systemic change within the whole tree’s metabolism, which is maintained over a longer period of time. The broad range of defence mechanisms that contribute to the activation and utilisation of SAR, includes antioxidants and antioxidant enzymes, which are generally linked to the actions of reactive oxygen species (ROS). The presented review discusses the current knowledge on the antioxidant defence strategies of spruce inner bark against the bark beetle (Ips typographus) and associated blue stain fungus (Ceratocystis polonica).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Adrian M Jeandet P Veneau J Weston LA Bessis R. Biological activity of resveratrol a stilbenic compound from grapevines against Botrytis cinerea the causal agent for grey mould. J. Chem. Ecol. 1997;23:1689-1702.

  • 2. Adrian M and Jeandet P. E­ects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological signi-cance in plant/pathogen interactions. Fitoterapia 2012;83:1345-1350.

  • 3. Alscher RG. Biosynthesis and antioxidant function of glutathione in plants. Physioi. Plantarum 2006;77:457-464.

  • 4. Baier P Führer E Kirisits T Rosner S. Defence reactions of Norway spruce against bark beetles and the associated fungus Ceratocystis polonica in secondary pure and mixed species stands. For. Ecol. Manage. 2002;159:73-86.

  • 5. Beaver RA. Insect-fungus relationship in the bark and ambrosia beetles. In: Wilding NM Collins PMH and JFW (Eds). Insect-Fungus Interactions. San Diego CA Academic Press 1989;119-143.

  • 6. Beckman CH. Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? Phys. Mol. Plant Path. 2000;57:101-110.

  • 7. Bonello P Gordon TR Storer AJ. Systemic induced resistance in Monterey pine. For. Pathol. 2001;31:99-106.

  • 8. Bonello P Blodgett JT. Pinus nigra-Sphaeropsis sapinea as a model pathosystem to investigate local and systemic effects of fungal infection of pines. Physiol. Mol. Plant Pathol. 2003;63:249-261.

  • 9. Bonello P Gordon TR Herms DA Wood DL Erbilgin N. Nature and ecological implications of pathogen-induced systemic resistance in conifers: A novel hypothesis. Physiol. Mol. Plant Pathol. 2006;68(4-6):95-104.

  • 10. Brignolas F Lacroix B Lieutier F Sauvard D Drouet A Claudot AC Yart A Berryman AA Christiansen E. Induced responses in phenolic metabolism in two Norway spruce clones after wounding and inoculations with Ophiostoma polonicum a bark-beetle associated fungus. Plant Physiol. 1995;109(3):821-827.

  • 11. Brignolas F Lieutier F Sauvard D Christiansen E Berryman AA. Phenolic predictors for Norway spruce resistance to the bark beetle Ips typographus (Coleoptera: Scolytidae) and an associated fungus Ceratocystis polonica. Can. J. For. Res. 1998;28:720-728.

  • 12. Brodnjak Voncina D. Antioksidanti Analizna kemija II Univerza v Mariboru Fakulteta za kemijo in kemijsko tehnologijo. 2006.

  • 13. Cameron JC and Pakrasi HB. Essential role of glutathione in acclimation to environmental and redox perturbations in the cyanobacterium synechocystis sp. PCC 6803. Plant Physiol. 2010;154: 1672-1685.

  • 14. Christiansen E in Bakke A. The spruce bark beetle of Eurasia. In: Berryman AA (Ed). Population ecology: theory and application. New YorkPlenum Press 1988;479-503.

  • 15. Christiansen E Krokene P Berryman AA Franceschi VR Krekling T Lieutier F Lonneborg A Solheim H. Mechanical injury and fungal infection induce acquired resistance in Norway spruce. Tree Physiol. 1999;19:399-403.

  • 16. Erbilgin N Krokne P Christian E Zeneli G Gershenzon J. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Oecologia 2006;148:426-436.

  • 17. Evensen PC Solheim H Hoiland K Stenersen J. Induced resistance of Norway spruce variation of phenolic compounds and their e­ects on fungal pathogens. Forest Pathol. 2000;30:97-108.

  • 18. Eyles A Bonello P Ganley R Mohammed C. Induced resistance to pests and pathogens in trees. New Phytol. 2009;185:893-908.

  • 19. Fäldt J Martin D Miller B Rawat S Böhlmann J. Traumatic resin defense in Norway spruce (Picea abies): methyl jasmonate-induced terpene synthase gene expression and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Mol. Biol. 2003;51:119-133.

  • 20. Felicijan M. Casovna analiza vsebnosti kondenziranih taninov v lubju navadne smreke pri napadu podlubnikov. Univerza v Mariboru. Fakulteta za kmetijstvo in biosistemske vede. Diplomsko delo 2011.

  • 21. Foyer CH Rennenberg H. Regulation of glutathione synthesis and its role in abiotic and biotic stress defence. In: Brunold C Rennenberg H De Kok LJ Stulen I Davidian J-C (Eds). Sulfur nutrition and sulfur assimilation in higher plants. Paul Haupt Bern 2000;127-153.

  • 22. Foyer CH in Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155:2-18.

  • 23. Franceschi VR Krokene P Krekling T Christiansen E. Phloem parenchyma cells are involved in local and distant defense responses to fungal inoculation or barkbeetle attack in Norway spruce (Pinaceae). Am. J. Bot. 2000;87:314-326.

  • 24. Franceschi VR Krekling T Christiansen E. Application of methyl jasmonate on Picea abies (Pinaceae) stems induces defense-related responses in phloem and xylem. Am. J. Bot. 2002;89(4):578-586 602-610.

  • 25. Franceschi VR Krokene P Christiansen E Krekling T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New phytol. 2005;167(2):353-376.

  • 26. Grant CM MacIver FH Dawes IW. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr. Genet. 1996;29(6):511-515.

  • 27. Grill D Tausz M and De Kok LJ. Signi-cance of glutathione in plant adaptation to the environment. In: De Kok LJ (Ed). Handbook of Plant Ecophysiology. Kluwer Academic Publishers Dordrecht 2001.

  • 28. Gullner G Komives T. The role of glutathione and glutathione-related enzymes in plant-pathogen interaction. In: Grill D Tausz M De Kok LJ (Eds). Signi­cance of glutathione to plant adaptation to the environment. Kluwer Academic Publishers Dordrecht Boston London 2001;207-239.

  • 29. Hammerbacher A Ralph SG Bohlmann J Fenning TM Gershenzon J Schmidt A. Biosynthesis of the major tetrahydroxystilbenes in spruce astringin and isorhapontin proceeds via resveratrol and is enhanced by fungal infection. Plant Physiol. 2011;157:876-890.

  • 30. Hammerbacher A Schmidt A Wadke N Wright LP Schneider B Bohlmann J Brand WA Fenning TM Gershenzon J Paetz C. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Plant Physiol. 2013;162:1324-1336.

  • 31. Harris C Hansen JM. Oxidative stress thiols and redox pro­les. Methods Mol. Biol. 2012;889:325-46.

  • 32. Hayat Q Hayat S Ifran M Ahmad A. E-ect of exogenous salicylic acid under changing enviroment: A review. Envirom. Exp. Bot. 2009;68:14-25.

  • 33. Havsteen BH. The biochemistry and medical signi­cance of the flavonoids. Pharmacol. Ther. 2002;96(2-3):67-202.

  • 34. He S Wu B Pan YJ Jiang LY. Stilbene oligomers from Parthenocissus laetevirens: isolation biomimetic synthesis absolute con­guration and implication of antioxidative defense system in the plant. J. Org. Chem. 2008;73(14):5233-5241.

  • 35. Holger L Bjørn Ø and Krokene P Thresholds in the life cycle of the spruce bark beetle under climate change. Int. J. 2006;1-10.

  • 36. Hudings JW Christiansen E Franceschi VR. Induction of anatomically based defense responses in stems of diverse conifers by methyl jasmonate: a phylogenetic perspective. Tree Physiol. 2004;24:251-264.

  • 37. Hudings JW and Franceschi VR. Methyl jasmonateinduced ethylene production in responsible for conifer phloem defense responses and reprogramming of stem cambial zone for traumatic resin duct formation. Plant Physiol. 2004;135(4):2134-2149.

  • 38. Johnson MA and Croteau R. Ecology and metabolism of plant lipids In: Fuller G and Nes WD (Eds). Washington DC American Chemical Society 1987.

  • 39. Jurc M. Gozdna zoologija. Ljubljana. Biotehniška fakulteta. Oddelek za gozdarstvo in obnovljive gozdne vire. Narodna in univerzitetna knjižnica. 2011.

  • 40. Kawano T and Muto S. Mechanism of peroxidase actions for salicylic acid induced generation of active oxygen species and an increase in cytosolic calcium in tobacco cell suspension culture. J. Exp. Bot. 2000;345(51):685-693.

  • 41. Klepzig KD Adams AS Handelsman J Ra-a KF. Symbioses: A key driver of insect physiological processes ecological interactions evolutionary diversi­cation and impacts on humans. Environ. Entomol. 2009;38(1):67-77.

  • 42. Kozlowski G Buchala A Metraux JP. Methyl jasmonate protects Norway spruce (Picea abies (L.) Karst.) seedlings against Pythium ultimum Trow. Phys. Mol. Plant Path. 1999;55(1):53-58.

  • 43. Kreft I Škrabanja V Bonafaccia G. Temelji prehranskih in biotskih vplivov antioksidantov. In: Žlender B Gašperlin L. (Eds). Antioksidanti v živilstvu. 20. Bitencevi živilski dnevi 2000. Ljubljana Biotehniška fakulteta Oddelek za živilstvo. 2000;33-37.

  • 44. Krekling T Franceschi VR Berryman AA Christiansen E. The structure and development of polyphenolic parenchyma cells in Norway spruce (Picea abies) bark. Flora 2000;195:354-369.

  • 45. Krekling T Franceschi VR Krokene P Solheim H. Di-erential anatomical responses of Norway spruce stem tissues to sterile and fungus infected inoculations. Trees 2004;18:1-9.

  • 46. Krokene P and Solheim H. Pathogenicity of four bluestain fungi associated with aggressive and nonaggressive bark beetles. Phytopatology 1998;88:39-44.

  • 47. Krokene P and Solheim H. What do low-density inoculations with fungus tell us about fungal virulence and tree resistance?. In: Lieutier F Mattson WJ and Wagner MR (Eds). Physiology and genetics of treephytophage interactions. INRA Editions Versailles France 1999;353-362.

  • 48. Kugler N. Vpliv temperature in cas ekstrakcije na vsebnost antioksidativnih ucinkovin iz iglavcev. Univerza v Mariboru Fakulteta za kemijo in kemijsko tehnologijo. Diplomsko delo 2011.

  • 49. Larcher W. Physiological plant ecology. Springer Verlag Berlin 2003.

  • 50. Li S-H Nagy NE Hammerbacher A Krokene P Niu X-M Gershenzon J Schneider B. Localization of phenolics in phloem parenchyma cells of Norway spruce (Picea abies). ChemBio-Chem. 2012;13:2707-2713.

  • 51. Lieutier F Brignolas F Sauvard D Yart A Galet C Brunet M Van de Sype H. Intra- and inter-provenance variability in phloem phenols of Picea abies and relationship to a bark beetle-associated fungus. Tree Physiol. 2003;23(4):247-256.

  • 52. Linnakoski R Beer ZW Niemelä P in Wing­eld MJ. Associations of conifer-infesting bark beetles and fungi in fennoscandia. Insects 2012;3:200-227.

  • 53. Likar M and Regvar M. Praktikum ­ziologije rastlin. Ljubljana Študentska založba. 2003;94.

  • 54. Malá J Hrubcová M Máchová P Cvrcková H Martincová O Cvikrová M. Changes in phenolic acids and stilbenes induced in embryogenic cell cultures of Norway spruce by two fractions of Sirococcus strobilinus mycelia. J. For. Sci. 2011;57:1-7.

  • 55. Martin D Tholl D Gershenzon J Bohlmann J. Methyl jasmonate induces traumatic resin ducts terpenoid resin biosynthesis and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol. 2002;129:1003-1018.

  • 56. Martin D Gershenzon J Bohlmann J. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol. 2003;132:1586-1599.

  • 57. Meyer AJ and Hell R. Glutathione homeostasis and redox-regulation by sulffydryl groups. Photosynth. Res. 2005;86:435-457.

  • 58. Miller B Madilao LL Ralph S Bohlmann J. Insect-induced conifer defense: White pine weevil and methyl jasmonate induce traumatic resinosis de novo formed volatile emissions and accumulation of terpenoid synthase and octadecanoid pathway transcripts in Sitka spruce. Plant Physiol. 2005;137:369-382.

  • 59. Müller M and Job H. Managing natural disturbance in protected areas: Tourists attitude towards the bark beetle in a German national park. Biol. Conserv. 2009;142:375-383.

  • 60. Nagy NE Fossdal CG Krokene P Krekling T Lönneborg A Solheim H. Induced responses to pathogen infection in Norway spruce phloem: changes in polyphenolic parenchyma cells chalcone synthase transcript levels and peroxidase activity. Tree physiol. 2004;24:505-15.

  • 61. Nagy NE Franceschi VR Kvaalen H Solheim H.. Callus cultures and bark from Norway spruce clones show similar cellular features and relative resistance to fungal pathogens. Trees 2005;19(6):695-703.

  • 62. Nebeker T and Hodges J. Host response to bark beetle and pathogen colonization. Schowalter GF (Ed). In: Beetle - pathogen interactions in conifer forests San Diego Academic 1993;157-173 pp.

  • 63. Noctor G Arisi A-CM Jouanin L Kunert KJ Rennenberg H Foyer CH. Glutathione: biosynthesis metabolism and relationship to stress tolerance explored in transformed plants. J. Exp. Bot. 1998;49:321;623-647.

  • 64. Noctor G. Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 2006;29:409-425.

  • 65. Noctor G Mhamdi A Chaouch S Han Y Neukermans J Marquez-Garcia B Queval G in Foyer CH. Glutathione in plants: an integrated overview. Plant Cell Environ. 2012;35(2):454-484.

  • 66. Novak M Urbanek Krajnc A Lah L Zupanec N Kraševec N Križman M Bohlmann J Komel R. Low density Ceratocystis polonica inoculation of Norway spruce (Picea abies) triggers accumulation of monoterpenes with antifungal properties. Eur. J. For. Res. 2014;133:573-583.

  • 67. Novak M. Cytochromes P450 from blue-stain fungi involved in monoterpene biotransformation. Univerza v Ljubljani. Medicinska fakulteta. Doktorska disertacija 2014.

  • 68. Paine TD Ra-a KF Harrington TC. Interactions among Scolytid bark beetles their associated fungi and live host conifers. Ann. Rev. Entomol. 1997;42:179-206.

  • 69. Percival GC. Induction of systemic acquired disease resistance in plants: Potential implications for disease management in urban forestry. J. Arboric. 2001;27(4):181-192.

  • 70. Pont V and Pezet R. Relation between the chemical structure and the biological activity of hydroxystilbenes against Botrytis cinerea. J. Phytopathol. 2008;130(1):1-8.

  • 71. Raffa KF Aukema BH Bentz BJ Carroll AL Hicke JA Turner MG Romme WH. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. BioScience 2008;58:501.

  • 72. Ralph SG Yueh H Friedmann M Aeschliman D Zeznik JA Nelson CC Butterfield YSN Kirkpatrick RLiu J Jones SJM et al. Conifer defence against insects: microarray gene expression proffling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell. Environ. 2006;29:1545-1570.

  • 73. Riedle-Bauer M. Role of reactive oxygen species and antioxidant enzymes in systemic virus infections of plants. J. Phytopathol. 2000;148:297-302.

  • 74. Rodrigues KCS Fett-Neto AG. Oleoresin yield of Pinus elliottii in a subtropical climate: Seasonal variation and effect of auxin and salicylic acid-based stimulant paste. Ind. Crops Prod. 2009;30:316-320.

  • 75. Rohde M Waldmann R Lunderstädt. Induced defence reaction in the -phloem of spruce (Picea abies) and larch (Larix decidua) ather attack by Ips typographus and Ips cembrae. Forest. Ecol. Manag. 1996;86:51-59.

  • 76. Sallé A Monclus R Yart A Garcia J Romary PLF. Fungal thora associated with Ips typographus: frequency virulence and ability to stimulate the host defence reaction in relation to insect population levels. Can. J. For. Res. 2005;35:365-373.

  • 77. Schmidt A Zeneli G Hietala AM Fossdal CG Krokene P Christiansen E Gershenzon J. Induced chemical defenses in conifers: Biochemical and molecular approaches to studyung their function. In: Schmidt A Zeneli G Hietala AM Fossdal CG Krokene P Christiansen Gershenzon JRomeo JT (Eds). Chemical ecology and phytochemistry in forest ecosystems Vol. 39. Elsevier Amsterdam 2005;1-28.

  • 78. Six DL and Wingfield MJ. The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Ann. Rev. Entomol. 2011;56:255-72.

  • 79. Sjostrom E. Wood chemistry fundamentals and applications. Second Edition. Academic press Inc. Harcourt Brace Jovanovich Boston London Sydney Tokyo Toronto 1993;293.

  • 80. Smirnoff N and Wheeler GL. Ascorbic acid in plants: biosynthesis and function. Crit. Rev. Plant. Sci. 2000;19:267-290.

  • 81. Smith GD Carroll AL Lindgren BS. Facilitation in bark beetles: endemic mountain pine beetle gets a helping hand. Agric. For. Entomol. 2011;13:37-43.

  • 82. Šuštaršic S. Kako meriti stres pri rastlinah? Univerza v Ljubljani Biotehniška fakulteta. Diplomski projekt 2012.

  • 83. Tausz M Wonisch A Grill D Morales D Jiménez MS. Measuring antioxidants in tree species in the natural environment: from sampling to data evaluation. J. Exp. Bot. 2003;54(387):1505-1510.

  • 84. Tausz M Šircelj H Grill D. The glutathione system as a stress marker in plant ecopysiology: is a stress-response concept valid? J. Exp. Bot. 2004;55(404):1955-1962.

  • 85. Tegischer K Tausz M Wieser G Grill D. Tree-age and needle-age dependent variations of antioxidants and photoprotective pigments in spruce needles at the alpine timberline. Tree Physiol. 2002;22:591-596.

  • 86. Torres P Avila JG Romo de Vivar A García AM Marín JC Aranda E Céspedes CL. Antioxidant and insect growthregulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 2003;64:463-473.

  • 87. Urbanek Krajnc A. E­ects of endogenously increased levels of thiol compounds and salicylic acid on Zucchini yellow mosaic virus infected Styrian oil pumpkin plants. Thesis. Uni Graz. 2004.

  • 88. Urbanek Krajnc A. A temporal analysis of antioxidative defense responses in the phloem of Picea abies ather attack by Ips typographus. Tree Physiol. 2009;29:1059-1068.

  • 89. Urbanek Krajnc A Kristl J Ivancic A. Application of salicylic acid induces antioxidant defense responses in the phloem of Picea abies and inhibits colonization by Ips typographus. ForEcol Manage. 2011;261:416-426.

  • 90. Urbanek Krajnc A Novak M Felicijan M Kraševec N Lešnik M Zupanec N Komel R. Antioxidative response patterns of Norway spruce bark to low-density Ceratocystis polonica inoculation. Trees 2014;28(4):1145-1160.

  • 91. Veberic R. Bioactive compounds in fruit plants. el. knjiga. Ljubljana. Narodna in univerzitetna knjižnica Biotehniška fakulteta. 2010. (URL): http://www.bf.unilj.si/agronomija/ooddelku/katedre-in-druge-org-enote/za-sadjarstvo-vinogradnistvo-invrtnarstvo/sadjarstvo/

  • 92. Viiri H Annila E Kitunen V Niemelä P. Induced responses in stilbenes and terpenes in fertilized Norway spruce ather inoculation with blue-stain fungus Ceratocystis polonica. Trees 2001;15:112-122.

  • 93. Wallis C Eyles A Chorbadjian R McSpadden Gardener B Hansen R Cipollini D Herms DA Bonello P. Systemic induction of phloem secondary metabolism and its relationship to resistance to a canker pathogen in Austrian pine. New Phytol. 2008;177:767-778.

  • 94. Wermelinger B. Ecology and management of the sprucebark beetle Ips typographus-a review of recent research. Forest Ecol Manag. 2004; 202(1-3):67-82.

  • 95. Whitney H. Relationships between bark beetles and symbiotic organisms. Mitton J Sturgeon K (Eds). In: Bark beetles in north American conifers. Austin: Univ. Texas 1982;183-211pp.

  • 96. Witzell J Martın JA. Phenolic metabolites in the resistance of northern forest trees to pathogens - past experiences and future prospects. Can. J. For. Res. 2008;38:2711-2727.

  • 97. Woods JA Hadfield JA Pettit GR Fox BW McGown AT. The interaction with tubulin of a series of stilbenes based on combretastatin A-4. Br. J. Cancer 1995;71:705-711.

  • 98. Xiang C Werner BL Christensen EM and Oliver DJ. The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 2001;126:564-574.

  • 99. Zechmann B Zellnig G Urbanek Krajnc A and Muller M. Artificial elevation of glutathione a­ects symptom development in ZYMV-infected Cucurbita pepo L. plants. Arch. Virol. 2007;152:747-762.

  • 100. Zeneli G Krokene P Christiansen E Krekling T Gershenzon J. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica a bark beetleassociated fungus. Tree Physiol. 2006;26:988-997.

  • 101. Zhao FJ Tausz M De Kok LJ. Role of sulfur for plant production in agricultural and natural ecosystems. In: Hell R Dahl C Kna­ D Leustek T (Eds). Advances in photosynthesis and respiration. Springer Dordrecht 2008;417-435.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 303 206 11
PDF Downloads 122 86 9