Spectroscopic Characterization of Cobalt (II) Complexes with Reduced Low-Molar Dextran Derivatives

Open access


The formation of Co(II) ion complexes with reduced low-molar dextran (RLMD, Mw 5000 g/mol) was studied at the pH range from 7.0 to 13.5. The cobalt content in synthesized Co(II)-RLMD complexes was ~3–12% (AAS) and it generally increases with pH. Co(II)-RLMD complexes were characterized by UV-Vis spectrophotometry and FTIR spectroscopy. UV-Vis data for synthesized complexes indicate tetragonally distorted Oh coordination of Co(II) ions with O atoms from ligand. The presence of IR bands at 765 cm−1 and 910 cm−1 in Co(II)-RLMD complexes indicates the existence of α-(1→6)O-glycosidic bonds. The similarities in the γ(C–H) range of the IR spectra indicate that there is no difference in the conformation of the glucopyranose units in RLMD and Co(II)-RLMD complexes. The occurrence of water molecules in Co(II)-RLMD complexes was confirmed by FTIR spectroscopy of deuterated samples.

1. Sibikina OV, Iozep AA, Moskvin AV. Polysaccharide complexes with metal cations: Structure and application (A review). Pharm Chem J 2009; 43: 341–5. https://doi.org/10.1007/s11094-009-0292-1

2. Gyurcsik B, Nagy L. Carbohydrates as ligands: Coordination equilibria and structure of the metal complexes. CoordChem Rev 2000; 203(1):81–149. https://doi.org/10.1016/S0010-8545(99)00183-6

3. Mitić Ž, Cakić M, Nikolić GM, et al. Synthesis, physicochemical and spectroscopic characterization of copper(II)-polysaccharide pullulan complexes by UV-Vis, ATR-FTIR, and EPR. Carbohydr Res 2011; 346: 434–41. https://doi.org/10.1016/j.carres.2010.12.011

4. Rudd TR, Skidmore MA, Guimond SE, et al. Site-specific interactions of copper(II) ions with heparin revealed with complementary (SRCD, NMR, FTIR and EPR) spectroscopic techniques. Carbohydr Res 2008;343: 2184–93. https://doi.org/10.1016/j.carres.2007.12.019

5. Ilić Lj, Ristić S, Cakić M, et al. Polynuclear complex Fe(III) with pullulan oligomers, process of its obtaining, and pharmaceutical preparations on the basis of the complex. EP 1363951 (A2); WO 0246241 (A2) 2003.

6. Somsook E, Hinsin D, Buakhrong P, et al. Interactions between iron(III) and sucrose, dextran, or starch in complexes. Carbohydr Polym 2005;61: 281–7. https://doi.org/10.1016/j.carbpol.2005.04.019

7. Bandwar RP, Flora SJS, Rao CP. Influence of zinc-saccharide complexes on some haematological parameters in rats. BioMetals 1997;10: 337–41. https://doi.org/10.1023/A:1018336819420

8. Luo Z, Zou J, Chen H, et al. Synthesis and characterization of amylose–zinc inclusion complexes. Carbohydr Polym 2016;137: 314–20. https://doi.org/10.1016/j.carbpol.2015.10.100

9. Bankura KP, Maity D, Mollick MMR, et al. Synthesis, characterization and antimicrobial activity of dextran stabilized silver nanoparticles in aqueous medium. Carbohydr Polym 2012; 89: 1159–65. https://doi.org/10.1016/j.carbpol.2012.03.089

10. Kanmani P,Lim ST. Synthesis and characterization of pullulan-mediated silvernanoparticles and its antimicrobial activities. Carbohydr Polym 2013; 97: 421–8. https://doi.org/10.1016/j.carbpol.2013.04.048

11. Glišić S, Cakić M, Nikolić G, et al. Synthesis, characterization and antimicrobial activity of carboxymethyl dextran stabilized silver nanoparticles. J Mol Struct 2015; 1084: 345–51. https://doi.org/10.1016/j.molstruc.2014.12.048

12. Cakić M, Glišić S, Nikolić G, et al. Synthesis, characterization and antimicrobial activity of dextran sulphatestabilized silver nanoparticles. J Mol Struct 2016; 1110: 156–61. https://doi.org/10.1016/j.molstruc.2016.01.040

13. Okamoto S, Eltis LD. The biological occurence and trafficking of cobalt. Metallomics 2011; 3: 963–70. https://doi.org/10.1039/c1mt00056j

14. Bandwar RP, Sastry MD, Kadam RM et al. Transition-metal saccharide chemistry: Synthesis and characterization of D-glucose, D-fructose, D-galactose, D-xylose, D-ribose, and maltose complexes of Co(II). Carbohydr Res 1997; 297: 333–9. https://doi.org/10.1016/S0008-6215(96)00285-6

15. Bondarenko OM, Ivask A, Kahru A, et al. Bacterial polysaccharide levan as stabilizing, non-toxic and functional coating material for microelement-nano-particles. CarbohydrPolym 2016; 136: 710–20. https://doi.org/10.1016/j.carbpol.2015.09.093

16. Tratar Pirc E, Arčon I, Kodre A, et al. Metal-ion environment in solid Mn(II), Co(II) and Ni(II) hyaluronates. Carbohydr Res 2004; 339: 2549–54. https://doi.org/10.1016/j.carres.2004.07.025

17. Mitić ŽJ, Nikolić GS, Cakić MD, et al. The investigation of Co(II)-dextran complexes. Hem Ind 2007; 61: 257–62. https://doi.org/10.2298/HEMIND0704257M

18. Mitić Ž, Cakić M, Nikolić G. Fourier-Transform IR spectroscopic investigations of Cobalt(II)-dextran complexes by using D2O isotopic exchange. Spectroscopy 2010; 24: 269–75. https://doi.org/10.1155/2010/712460

19. Tawfik SM, Hefni HH. Synthesis and antimicrobial activity of polysaccharide alginate derived cationic surfactant-metal(II) complexes. Int J BiolMacromol 2016; 82: 562–72. https://doi.org/10.1016/j.ijbiomac.2015.09.043

20. Jeanes A. Dextrans and Pullulans: Industrially Significant α-D-Glucans, in: P.A. Sandford, A. Laskin, (Eds.), Extracellular Microbial Polysaccharides, ACS Symposium Series, No. 45, 1977: 284–96.

21. Stanković RI, Jovanović S, Ilić Lj et al. Study of aqueous dextran solutions under high pressures and different temperatures by dynamic light scattering. Polymer 1991; 32: 235–40. https://doi.org/10.1016/0032-3861(91)90008-7

22. Bowman HW. Clinical evaluation of dextran as a plasma volume expander. J Am Med Assoc 1953; 153: 24–6. https://doi.org/10.1001/jama.1953.02940180026009

23. De Belder AN. Dextran, Amersham Biosciences AB (Chapter 5), Uppsala, Sweden, 2003.

24. Naessens M, Cerdobbel A, Soetaert W, et al. Leuconostocdextransucrase and dextran: Production, properties and applications. JChem Tech Biotechnol 2005;80: 845–60. https://doi.org/10.1002/jctb.1322

25. De Aquino FWB, Franco DW. Formation of dextran deposits in Brazilian sugar cane spirits. J Agric Food Chem 2011; 59: 8249–8255. https://doi.org/10.1021/jf201041z

26. Mitić Ž, Ph.D. Thesis, Synthesis and the spectra-structure correlation of some biometal complexes with dextran and pullulan, University of Niš, Serbia, 2009.

27. Donot F, Fontana A, Baccou JC, et al. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 2012;87: 951–62. https://doi.org/10.1016/j.carbpol.2011.08.083

28. Oshtrakh MI, Semionkin VA, Prokopenko PG et al. Hyperfine interactions in the iron cores from various pharmaceutically important iron-dextran complexes and human ferritin: A comparative study by Mössbauer spectroscopy. Int JBiolMacromol 2001; 29: 303–14. https://doi.org/10.1016/S0141-8130(01)00181-7

29. Cakić M, Mitić Ž, Nikolić G, et al. Design and optimization of drugs used to treat copper deficiency. Expert Opin Drug Discov 2013; 8: 1253–63. https://doi.org/10.1517/17460441.2013.825245

30. Yang L, Tian W, Xu Y, et al. Interactions between metal ions and carbohydrates: The coordination behavior of neutral erythritol to transition metal ions. J Inorg Biochem 2004; 98(:1284–92. https://doi.org/10.1016/j.jinorgbio.2004.04.012

31. Bera M. Patra A. Study of potential binding of biologically important sugars with a dinuclearcobalt(II) complex. Carbohydr Res 2011;346:733–38. https://doi.org/10.1016/j.carres.2011.02.010

32. Nikolić RS, Nikolić GM, Krstić NS. Spectroscopic study of paracetamol-biometal (M2+) ion complexes. EurJ Pharm Sci 2011;44: 187–8.

33. Lever ABP. Inorganic Electronic Spectroscopy. 2nd ed.,Elsevier, New York, 1984.

34. Jahn HA, Teller E. Proc. R. Soc. London, Ser. A 1937;161: 220–5. https://doi.org/10.1098/rspa.1937.0142

35. Mitić Ž, Nikolić G, Cakić M, et al. FTIR spectroscopic characterization of Cu(II) coordination compounds with exopolysaccharide pullulan and its derivatives. J Mol Struct 2009;924-6: 264–73. https://doi.org/10.1016/j.molstruc.2009.01.019

36. Jeremić K, Ilić Lj, JovanovićS. Kinetics of dextran depolymerization in aqueous HCl. EurPolymJ1985; 21: 537–40.

37. Somogyi M. A new reagent for the determination of sugars. J Biol Chem 1945; 160: 61–68.

38. Shingel KI. Determination of structural peculiarities of dextran, pullulan and γ-irradiated pullulan by Fourier-transform IR spectroscopy. Carbohydr Res 2002; 337: 1445–51. https://doi.org/10.1016/S0008-6215(02)00209-4

39. Wiberg E, Holleman AF, Wiberg N. Inorganic Chemistry, Academic Press, New York, 2001: 1478–9.

40. Cotton FA, Wilkinson G. Advanced Inorganic Chemistry. 4th ed. Wiley-Interscience, New York,1980.

41. Bernhardt PV, Lawrance GA. Transition metal groups 9-12 Vol. 6, in:FentonDE. (Eds.), Comprehensive Coordination Chemistry II, 2nd ed., Elsevier-Pergamon, USA, 2003: 2–122.

42. Bernhardt PV, Brik MG, Avram NM, Avram CN. Part III. Jahn-Teller Effect for the 3d Ions (Orbital Triplets in a Cubic Crystal Field), in:Köppel H, Yarkony DR, Barentzen H. (Eds.), The Jahn-Teller Effect Fundamentals and Implications for Physics and Chemistry, Berlin Heidelberg, Springer-Verlag, 2009: 347–70.

43. Cakić M, Mitić Ž, Nikolić GS, et al. The investigations of bioactive copper(II) complexes with reduced low-molecular dextran. Spectroscopy 2008; 22: 177–85. https://doi.org/10.1155/2008/754741

44. Berglund B, Lindgren J, Tegenfeldt J. O-H and O-D stretching vibrations in isotopically dilute HDO molecules in some solid hydrates. J Mol Struct 1978; 43: 169–77. https://doi.org/10.1016/0022-2860(78)80004-0

45. Berglund B, Lindgren J, Tegenfeldt J. On the correlation between deuteron quadrupole coupling constants, O-H and O-D stretching frequencies and hydrogen-bond distances in solid hydrates. J Mol Struct 1978; 43: 179–91. https://doi.org/10.1016/0022-2860(78)80005-2

46. Brink G, Falk M. Infrared studies of water in crystalline hydrates: Ba (NO2)2•H2O. Spectrochim-Acta A 1971; 27: 1811–15.

Acta Facultatis Medicae Naissensis

The Journal of Faculty of Medicine in Nis

Journal Information

Cite Score 2018: 0.33

SCImago Journal Rank (SJR) 2018: 0.134
Source Normalized Impact per Paper (SNIP) 2018: 0.287

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 257 159 16
PDF Downloads 137 102 8