Microstructural and Mechanical Characterization of Al-0.80Mg-0.85Si-0.3Zr Alloy

Open access

Abstract

In this study, Al-0.80Mg-0.85Si alloy was modified with the addition of 0.3 wt.-% zirconium and the variation of microstructural features and mechanical properties were investigated. In order to produce the billets, vertical direct chill casting method was used and billets were homogenized at 580 °C for 6 h. Homogenized billets were subjected to aging practice following three stages: (i) solution annealing at 550 °C for 3 h, (ii) quenching in water, (iii) aging at 180 °C between 0 and 20 h. The hardness measurements were performed for the alloys following the aging process. It was observed that peak hardness value of Al-0.80Mg-0.85Si alloy increased with the addition of zirconium. This finding was very useful to obtain aging parameters for the extruded hollow profiles which are commonly used in automotive industry. Standard tensile tests were applied to aged profiles at room temperature and the results showed that modified alloy had higher mechanical properties compared to the non-modified alloy.

[1] Gowrishankar, M.C., Shravan, Rakesh, Rahul, Kını, A., Sharma, S.S. (2014). Effect of Artificial Aging on Strength and Wear Behaviour of Solutionized Aluminium 6061 Alloy. 3rd World Conference on Applied Sciences, Engineering & Technology. 27-29 September 2014 (pp. 388-393). Kathmandu, Nepal.

[2] Sharma, P., Khanduja, D. & Sharma, S. (2016). Dry sliding wear investigation of Al6082/Gr metal matrix composites by response surface methodology. J Mater Res Technol. (5)1, 29-36. DOI: 10.1016/j.jmrt.2015.05.001.

[3] Camero, S., Puchi, E.S. & Gonzalez, G. (2006). Effect of 0.1% vanadium addition on precipitation behaviour and mechanical properties of Al-6063 commercial alloy. J Mater Sci. 41, 7361-7373. DOI 10.1007/s10853-006-0794-0.

[4] Venkateswarlu, K., Pathak, L.C., Ray, A.K., Das, G., Verma, P.K., Kumar, M. & Ghosh, R.N. (2004). Microstructure, tensile strength and wear behaviour of Al-Sc alloy. Materials Science and Engineering: A, 383(2), 374-380. DOI: 10.1016/j.msea.2004.05.075.

[5] Jia, Z.H., Huang, H.L., Wang, X.L., Xing, Y. & Liu, Q. (2016). Hafnium in Aluminum Alloys: A Review. Acta Metall. Sin. (Engl. Lett.) 29(2), 105-119. DOI 10.1007/s40195-016-0379-0.

[6] Meng, Y., Zhao, Z. & Cui, J. (2013). Effect of minor Zr and Sc on microstructures and mechanical properties of Al-Mg- Si-Cu-Cr-V alloys. Trans. Nonferrous Met. Soc. China 23, 1882-1889. DOI: 10.1016/S1003-6326(13)62673-4.

[7] Lityñska, L., Abou-ras, D., Kostorz, G. & Dutkiewicz, J. (2006). TEM and HREM study of Al3Zr precipitates in an Al-Mg-Si-Zr alloy. Journal of Microscopy. 223, 182-184.

[8] Cerri, E. & Leo, P. (2005). Influence of severe plastic deformation on aging of Al-Mg-Si alloys. Metal Science and Engineering A 410-411, 226-229. DOI: 10.1016/j.msea.2005.08.135.

[9] Qingchun, X., Jing, Z., Haicheng, P., Lina, H. & Rongde, L. (2011). Effect of Scandium and Zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg Alloy. China Foundry. 8(1), 137-140.

[10] Cabibbo, M. & Evangelista, E. (2006). A TEM Study of the Combined Effect of Severe Plastic Deformation and (Zr), (Sc+Zr)-Containing Dispersoids on an Al-Mg-Si Alloy. J Mater Sci. 41(16), 5329-5338. DOI: 10.1007/s10853-006- 0306-2.

[11] Poková, M. & Cieslar, M. (2014). Study of twin-roll cast Aluminium alloys subjected to severe plastic deformation by equal channel angular pressing. IOP Conf. Ser.: Mater. Sci. Eng 63, conference 1.

[12] Mrówka-Nowotnik, G., Sieniawski, J. & Wierzbińska, M. (2007). Intermetallic phase particles in 6082 aluminum alloy. Archives of Materials Science and Engineering. 28(2), 69-76.

[13] Mrówka-Nowotnik, G. & Sieniawski, J. (2005). Influnce of heat treatment on the microstructure and mechanical properties of 6005 and 6082 aluminium alloys. Journal of Materials Processing Technology. 162-163, 367-372. DOI: 10.1016/j.jmatprotec.2005.02.115.

[14] Eivani, A.R., Zhou, J., Duszczyk, J. (2011). Microstructural Evolution During the Homogenization of Al-Zn-Mg Aluminum Alloys. Recent Trends in Processing and Degradation of Aluminium Alloys, Prof. Zaki Ahmad (Ed.) ISBN: 978-953-307-734-5, InTech, 477-516, DOI: 10.5772/34695.

[15] Edwards, G.A., Stiller, K., Dunlop, G.L. & Couper, M.J. (1998). The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 46(11), 3893-904. DOI: 10.1016/S1359- 6454(98)00059-7.

[16] Murayama, M., Hono, K., Miao, W. F. & Laughlin, D.E. (2001). The effect of Cu Additions on the precipitation kinetics in an Al-Mg-Si alloy with excess Si. Metal Mater Trans A 32(2), 239-246. DOI: 10.1007/s11661-001-0254-z.

[17] Demir, H. & Gündüz, S. (2009). The effects of aging on machinability of 6061 aluminium alloy. Materials and Design. 30(5), 1480-1483. DOI: 10.1016/j.matdes. 2008.08.007.

[18] Fang, X., Song, M., Li, K. & Du, Y. (2010). Precipitation sequence of An Aged Al-Mg-si Alloy. J. Min. Metall. Sect. B-Metall. 46(2)B, 171-180. DOI: 10.2298/JMMB1002171F.

[19] Fan, Y. (2012). Precipitation Strengthening of Aluminum by Transition Metal Aluminides. Master of Science Thesis, Worcester Polytechnic Institute, Worcester, MA.

[20] Liu, M., Wu, Z., Yang, R., Wei, J., Yu, Y., Skaret, P.C., Roven, H.J. (2015). DSC analyses of static and dynamic precipitation of an Al-Mg-Si-Cu aluminum alloy. Prog. Nat. Sci.: Materials International. 25, 153-158. DOI: 10.1016/j.pnsc.2015.02.004.

[21] Mukhopadhyay P. (2012). Alloy Designation, Processing, and Use of AA6xxx Series Aluminum Alloys. International Scholarly Research Network, ISRN Metallurgy. 1-15. http://dx.doi.org/10.5402/2012/165082.

[22] Røyset, J. & Ryum, N. (2005). Scandium in Aluminium Alloys. Int. Mater. Rev. 50(1), 19-44. DOI 10.1179/174328005X14311.

[23] Kahrıman, F. & Zeren, M. (2017). The effect of Zr on aging kinetics and properties of as-cast AA6082 alloy. M. Inter Metalcast. 11(2), 216-222. DOI: 10.1007/s40962-016-0047-1.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 278 278 20
PDF Downloads 120 120 8