Tribological Characterization of Al-bronzes Used as Mold Materials

Open access

Abstract

Among the copper based alloys, Cu-Al-X bronzes are commonly used as mold materials due to their superior physical and chemical properties. Mold materials suffer from both wear and corrosion, thus, it is necessary to know which one of the competitive phenomenon is dominant during the service conditions. In this study, tribo-corrosion behavior of CuAl10Ni5Fe4 and CuAl14Fe4Mn2Co alloys were studied and electrochemical measurements were carried out using three electrode system in 3.5 % NaCl solution in order to evaluate their corrosion resistance. In tribo-corrosion tests, alloys were tested against zirconia ball in 3.5 % NaCl solution, under 10N load with 0.04 m/s sliding speed during 300 and 600 m. The results indicate that (i) CuAl10Ni5Fe4 alloy is more resistant to NaCl solution compared to CuAl14Fe4Mn2Co alloy that has major galvanic cells within its matrix, (ii) although CuAl10Ni5Fe4 alloy has lower coefficient of friction value, it suffers from wear under dry sliding conditions, (iii) as the sliding distance increases, corrosion products on CuAl14Fe4Mn2Co surface increase at a higher rate compared to CuAl10Ni5Fe4 leading to a decrease in volume loss due to the lubricant effect of copper oxides.

[1] Li, W.S., Wang, Z.P., Lu, Y., Gao, Y. & Xu, J.L. (2006). Preparation, mechanical properties and wear behaviors of novel aluminum bronze for dies. Trans. Nonferrous Met. Soc. China. 16, 607-612. DOI: 10.1016/S1003- 6326(06)60107-6.

[2] Pisarek, B.P. (2013). Model of Cu-Al-Fe-Ni bronze crystallization. Archives of Foundry Engineering. 13(3), 72-79. DOI: 10.2478/afe-2013-0063.

[3] Labanowski, J. & Olkowski, T. (2014). Effect of microstructure on mechanical properties of BA1055 bronze castings. Archives of Foundry Engineering. 14(2), 73-78. DOI: 10.2478/afe-2014-0040.

[4] Wu, Z., Cheng, Y. F., Liu, L., Lv, W. & Hu, W. (2015). Effect of heat treatment on microstructure evolution and erosion-corrosion behaviour of a nickel-aluminum bronze alloy in chloride solution. Corr. Sci., 98, 260-270. DOI: 10.1016/j.corsci.2015.05.037.

[5] Jin, K., Qiao, Z., Zhu, S., Cheng, J., Yin, B. & Yang, J. (2016). Synthesis effects of Cr and Ag on the tribological properties of Cu-9Al-4Fe-Mn bronze under sweater condition. Tribol. Int., 101, 69-80. DOI: 10.1016/j.triboint.2016.04.012.

[6] Chen, R.P., Liang, Z.Q., Zhang, W.W., Zhang, D.T., Luo, Z.Q. & Li, Y.Y. (2007). Effect of heat treatment on microstructure and properties of hot-extruded nickelaluminium bronze. Trans. Nonferrous Met. Soc. China. 17, 1254-1258. DOI: 10.1016/j.corsci.2015.05.037.

[7] Li, W.S., Wang, Z.P., Lu, Y., Jin, Y.H., Yuan, L.H. & Wang, F. (2006). Mechanical and tribological properties of a novel aluminium bronze material for drawing dies. Wear. 261, 155-163. DOI: 10.1016/j.wear.2005.09.032.

[8] Xu, X., Lv, Y., Hu, M., Xiong, D., Zhang, L., Wang, L. & Lu, W. (2016). Influence of second phase on fatigue crack growth behaviour of nickel aluminum bronze. Int. J. Fatigue. 82(3), 579-587. DOI: 10.1016/j.ijfatigue.2015.09.014.

[9] Sadawy, M.M. & Ghanem, M. (2016). Grain refinement of bronze alloy by equal-channel angular pressing (ECAP) and its effect on corrosion behaviour. Defence Tech. 12(4), 316-323. DOI: 10.1016/j.dt.2016.01.013.

[10] Zeng, J., Xu, J., Hua, W., Xia, L., Deng, X., Wang, S., Tao, P., Ma, X., Yao, J., Jiang, C. & Lin, L. (2009). Wear performance of the lead free tin bronze matrix composite reinforced by short carbon fibers. Appl. Surf. Sci. 13-14, 6647-6651. DOI: 10.1016/j.apsusc.2009.02.063.

[11] Li, Y., Ngai, T.L., & Xia, W. (1996). Mechanical, friction and wear behaviors of a novel high-strength wear-resisting aluminum bronze. Wear. 197, 130-136. DOI: 10.1016/0043- 1648(95)06890-2.

[12] Li, W.S., Wang, Z.P., Lu, Y., Yuan, L.H., Xiao, R.Z. & Zhao, X. D. (2009). Corrosion and wear behaviors of Albronzes in 5.0% H2SO4 solution. Trans. Nonferrous Met. Soc. China. 19(2), 311-318. DOI: 10.1016/S1003- 6326(08)60270-8.

[13] Wu, Z., Cheng, Y.F., Liu, L., Lv, W. & Hu, W. (2015). Effect of heat treatment on microstructure evolution and erosion-corrosion behavior of a nickel-aluminum bronze alloy in chloride solution. Corr. Sci. 98, 260-270. DOI: 10.1016/j.corsci.2015.05.037.

[14] Shi, Sun, Y., Bloyce, A. & Bell, T. (1996). Unlubricated rolling-sliding wear mechanisms of complex aluminium bronze against steel. Wear. 193(2), 235-241. DOI: 10.1016/0043-1648(95)06773-6.

[15] Alam, S., Masrhall, R.I. & Sasaki, S. (1996). Metallurgical and tribological investigations of aluminium bronze bushes made by a novel centrifugal casting technique. Tribol. Int. 29(6), 487-492. DOI: 10.1016/0301-679X(95)00108-G.

[16] Al-Hashem, A. & Riad, W. (2002). The role of microstructure of nickel-aluminum-bronze alloy on its cavitation corrosion behavior in natural seawater. Mater. Charact. 48, 37-41. DOI: 10.1016/S1044-5803(02)00196-1.

[17] Kudashov, D.V., Zauter, R. & Müller, H.R. (2008). Sprayformed high-aluminium bronzes. Mater. Sci. & Eng. A. 477, 43-49. DOI: 10.1016/j.msea.2007.06.085.

[18] Talbot, D., Talbot, J. (1998). Corrosion Science and Technology. USA: CRC Press.

[19] Bardal, E. (2004). Corrosion and Protection. London: Springer-Verlag.

[20] Ozkazanc, H. & Zor, S. (2013). Electrochemical synthesis of polypyrrole (PPy) and PPy/metal composites on copper electrode and investigation of their anticorrosive properties. Prog. Org. Coat. 76(4), 720-728. DOI: 10.1016/j.porgcoat.2013.01.002.

[21] Krogstad, H.N. & Johnsen, R. (2017). Corrosion properties of nickel-aluminium bronze in natural seawater - effect of galvanic coupling to UNS S31603. Corr. Sci. in press. DOI: 10.1016/j.corsci.2017.03.016.

[22] Wharton, J.A. & Stokes, K.R. (2008). The influence of nickel-aluminium bronze microstructure and crevice solution on the initiation of crevice condition. Electrochim. Acta. 53(5), 2463-2473. DOI: 10.1016/j.electacta.2007.10.047.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 221 19
PDF Downloads 117 117 16