A Study of Effects of Precipitation Hardening of Low-Alloy Copper-Nickel Spheroidal Cast Iron

Open access

Abstract

One type of spheroidal cast iron, with additions of 0.51% Cu and 0.72% Ni, was subjected to precipitation hardening. Assuming that the greatest increase in hardness after the shortest time of ageing is facilitated by chemical homogenisation and fragmentation of cast iron grain matrix, precipitation hardening after pre-normalisation was executed. Hardness (HB), microhardness (HV), qualitative and quantitative metalographic (LM, SEM) and X-ray structural (XRD) tests were performed. The acquired result of 13.2% increase in hardness after ca. 5-hour ageing of pre-normalised cast iron confirmed the assumption.

[1] Massalski, T.B. (1990). Binary Alloy Phase Diagrams. (2nd ed.). Ohio: ASM International.

[2] Lee, B.J., Wirth, B.D., Shim, J.H., Kwon, J., Kwon, S.C. & Hong, J.H. (2005). Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys. Physical Review B. 71(18), 184205:1-184205:15. DOI: 10.1103/Phys RevB.71.184205.

[3] Velthuisa, S.G.E., Rootc, J.H., Sietsmab, J., Rekveldta, M. Th. & Van Der Zwaagb, S. (1998). The ferrite and austenite lattice parameters of Fe–Co and Fe–Cu binary alloys as a function of temperature. Acta mater. 46(15), 5223-5228. DOI: 10.1016/S1359-6454(98)00248-1.

[4] Martin, J.W., Doherty, R.D. & Cantor, B. (1997). Stability of microstructure in metallic systems. (2nd ed.). Cambridge: Cambridge University Press.

[5] Yina, G., Yang, C. & Lud, Y. (2010). HREM Observation of Age-Precipitated Particles in Practical Cu-bearing Ultra-Low Carbon Steels. Journal of Materials Science & Technology. 26(5), 433–438. DOI: 10.1016/S1005-0302(10)60068-0.

[6] Bhagat, A.N., Pabi, S.K., Ranganathan, S. & Mohanty, O.N. (2004). Aging Behaviour in Copper Bearing High Strength Low Alloy Steels. Isij International. 44(1), 115-122. DOI: 10.2355/isijinternational.44.115.

[7] Dhua, S.K., Ray, A. & Sarma, D.S. (2001). Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels. Materials Science and Engineering: A. 318(1–2), 197-210. DOI: 10.1016/S0921-5093(01)01259-X.

[8] Ray, P.K., Ganguly, R.I. & Panda, A.K. (2003). Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables. Materials Science and Engineering: A. 346(1), 122-131. DOI:10.1016/S0921-5093(02)00526-9.

[9] Pytel, S.M. & Rynkar, B. (1997). Low carbon copper-bearing structural steels. In Ist National Scientific Conference (Materials Science-Quality-Foundry), 20-22 February 1997 (pp. 177-184). Cracow, Poland: Institute of Metallurgy and Materials Science. (in Polish).

[10] Lis, J. & Wieczorek, P. (2001). Precipitation strengthening and mechanical properties of ultra low carbon bainitic steel with Cu addition. Materials Engineering. 121(2), 96-102. (in Polish).

[11] Kosowski, A., Podrzucki, Cz. (1981). Alloyed cast iron. Cracow: Ed. AGH. (in Polish).

[12] Pan, E.N. (1988). Einfluß von Kupfer, Zinn und mangan aufdie eutektoide Umwandlung von graphitischen Gußeisen. Giesserei-Praxis. 15-16, 193-207.

[13] Podrzucki, Cz. (1991). Cast Iron. Structure, Properties, Application. Vol. 1 and 2. Cracow: Publishing house ZG STOP. (in Polish).

[14] Richards, L. & Nicola, W. (2003). Final; technical report: Age strengthening of gray cast iron, phase III. University of Missouri. Report No.DOE/ID13851. Retrieved May 02, 2014, from http://www.osti.gov/scitech/biblio/812004. DOI: 10.2172/812004.

[15] Szykowny, T., Dymski, S. (2008). Influence of copper on effects of precipitation hardening of ductile cast iron. Archives of Foundry Engineering. 8(3), 191-198.

[16] Szykowny, T., Dymski, S., Giłtka, T. (2011). The influence of the copper content and precipitation hardening on mechanical properties of nodular cast iron. In S. Pietrowski (Eds.), High quality Foundry Technologies, Materials and Castings, (pp.133-142). Katowice-Gliwice: Polish Academy of Science, The Katowice Branch, Commission of Foundry Engineering Gliwice.

[17] Szykowny, T. (1995). Analysis of dispersive hardening of the low Cu–content spheroidal cast iron. Scientific Papers ATR Mechanics. 193(38), 131-137. (in Polish).

[18] Szykowny, T. (2003). Investigations of low-copper spheroidal graphite cast iron precipitation hardening. In International Scientific Conference Ductile Iron of the 21ST Century, 2-3 October 2003 (pp. 33-42). Cracow, Poland: Foundry Research Insitute. (in Polish).

[19] Szykowny, T. (1997). Effect of Cu-content and starting microstructure of spheroidal cast iron on the results of dispersive hardening. In VIII International Scientific and Technical Conference, Trends and Development in Manufacturing Processes, September 1997 (pp. 23-28). Zielona Góra, Poland: Publ. PZ. (in Polish).

[20] Szykowny, T. (2003). Ductile Cast Iron Structure Forming During Continuous Cooling. Archives of Foundry. 3(8), 111-118. (in Polish).

[21] Jonuleit, A., (1977). Austenitkorngrossendiagram und einige Aspekte des Austenitkornwachstums für unlegiertes Gusseisen mit Kugelgraphit. Gissereitechnik. 6, 163-170.

[22] Ryś, J. (1995). Stereology of materials. Cracow: Fotobit Design. (in Polish).

[23] Rusakov, A.A. (1977). Roentgenography of Metals. Moscow: Atomizdat. (in Russian).

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 180 7
PDF Downloads 77 76 4