Registration of Melting and Crystallization Process of Ultra-light Weight MgLi12,5 Alloy with Use of ATND Method

Open access

Registration of Melting and Crystallization Process of Ultra-light Weight MgLi12,5 Alloy with Use of ATND Method

To the main advantages of magnesium alloys belongs their low density, and just because of such property the alloys are used in aviation and rocket structures, and in all other applications, where mass of products have significant importance for conditions of their operation. To additional advantages of the magnesium alloys belongs good corrosion resistance, par with or even surpassing aluminum alloys. Magnesium is the lightest of all the engineering metals, having a density of 1.74 g/cm3. It is 35% lighter than aluminum (2.7 g/cm3) and over four times lighter than steel (7.86 g/cm3). The Mg-Li alloys belong to a light-weight metallic structural materials having mass density of 1.35-1.65 g/cm3, what means they are two times lighter than aluminum alloys. Such value of mass density means that density of these alloys is comparable with density of plastics used as structural materials, and therefore Mg-Li alloys belong to the lightest of all metal alloys. In the present paper are discussed melting and crystallization processes of ultra-light weight MgLi12,5 alloys recorded with use of ATND methods. Investigated magnesium alloy was produced in Krakow Foundry Research Institute on experimental stand to melting and casting of ultra-light weight alloys. Obtained test results in form of recorded curves from ATND methods have enabled determination of characteristic temperatures of phase transitions of the investigated alloy.

Haferkamp H., Boehm R., Holzkamp U., Jaschik Ch., Kaese V., Niemeyer M. (2001). Alloy Development, Processing and Applications in Magnesium Lithium Alloys. Materials Transactions. 42 (7), 1160-1166.

Wang J. Y., Chen Y. H., Yang Y. L, Lee S. (2005). Microstructures and mechanical behavior of processed Mg-Li-Zn alloy. Material Science Forum. 488-489, 465.

Haibin Ji, Guangchun Yao., Hongbin Li. (2008). Microstructure, cold rolling, heat treatment, and mechanical properties of Mg-Li alloys, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. 15 (4), 440-443. DOI: 10.1016/S1005-8850(08)60083-3.

Kulecki M. K. (2008). Magnesium and its alloys applications in automotive industry. The International Journal of Advanced Manufacturing Technology. 39 (9-10), 851-865. DOI: 10.1007/s00170-007-1279-2.

Friedrich H., Schumann S. (2001). Research for a "new age of magnesium" in the automotive industry. Journal of Materials Processing Technology. 117 (3), 276-281. DOI: 10.1016/S0924-0136(01)00780-4.

Aghion E., Bronfin B. (2000). Magnesium Alloys Development towards the 21st Century, Material Science Forum, 350-351, 19-20. DOI: 10.4028/www.scientific.net/MSF.350-351.19.

Kainer K., U., Benzler T., U. (2004). Squeeze-Casting and Thixo-Casting of magnesium Alloys. Magnesium - Alloys and technology. 56-71. DOI:10.1002/3527602046.ch4.

Białobrzeski A., Pezda J. (2011). Registration of melting and crystallization process of synthetic MgLi3,5 alloy with use of ATND method. Archives of Foundry Engineering. 7 (3), 17-20.

Singh R. K. (1994). Ductility troughs in Mg-Li alloys. Journal of Materials Science Letters. 13 (10), 744-745. DOI: 10.1007/BF00461390.

Massalski T. B., Murray J. L., Benett L. H., Baker H. (1990). Binary Alloy Phase Diagrams. American Society for Metals.

Gasior W.; Moser Z.; Zakulski W.; Schwitzgebel G. (1996). Thermodynamic studies and the phase diagram of the Li-Mg system. Metallurgical and Materials Transactions A. 27 (9), 2419-2428. DOI: 10.1007/BF02652335.

Dong H., Wang L., Wu Y., Wang L. (2011). Preparation and characterization of Mg-6Li and Mg-6Li-1Y alloys. Journal of Rare Earths. 29 (7), 645-649. DOI: 10.1016/S1002-0721(10)60514-5.

Rudajevová A., Lukáč P., Kúdela S. (2005). Thermal Properties of Mg-Li and Mg-Li-Al Alloys. Magnesium: Proceedings of the 6th International Conference Magnesium Alloys and Their Applications. 106-109. DOI: 10.1002/3527603565.ch15.

Żydek A., Kamieniak J., K. N. Braszczyńska-Malik K. N. (2011). Evolution of Mg-5Al-0.4Mn microstructure after rare earth elements addition. Archives of Foundry Engineering. 11 (2), 157-160.

Oniszczuk A., Rzadkosz S., Wójcik A., Cieślak W. (2007). Iron presence in the technology of Mg-Al casting. Archives of Foundry Engineering. 7 (2), 19-24.

Rzychoń T., Kiełbus A., Szala J. (2007). Microstructure and quantitative analysis of cast ZRE1 magnesium alloy. Archives of Foundry Engineering. 7 (1), 175-178.

Dobrzański L. A, Król M. (2010). Thermal and mechanical characteristics of cast Mg-Al-Zn alloy. Archives of Foundry Engineering. 10 (1), 27-30.

Gu X. N., Zheng W., Cheng Y., Zheng Y. F. (2009). A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate. Acta Biomaterialia. 5 (7), 2790-2799. DOI: 10.1016/j.actbio.2009.01.048.

Liu B., Zhang M., Wu R. (2007). Influence of Ce on microstructure and mechanical properties of LA141 alloys. Transaction of Nonferrous Metals Society of China. 17, 376-380.

Drozd Z, Trojanova Z, Kudela S. (2004). Deformation behavior of Mg-Li-Al alloys. Journal of Alloys and Compounds. 378 (1-2), 192-195.

Sivakesavam O., Prasad Y. V. R. K. (2002). Characteristics of superplasticity domain in the processing map for working of as-cast Mg-11.5Li-1.5Al alloy. Materials Science and Engineering: A, 323 (1-2), 270-277. DOI: 10.1016/S0921-5093(01)01392-2.

Górny Z., Sobczak J. (2005). Advanced cast materials based on non-ferrous metals. Krakow: ZA-PIS.

Zhang M., Wu R., Wang T., Liu B., Niu Z. (2007). Microstructure and mechanical properties of Mg-xLi-3Al-1Ce alloys. Transaction of Nonferrous Metals Society of China. 17, 381-384.

Wasilewski P. (1993). Silumins - Modification and its impact on structure and properties. Katowice: PAN Solidification of metals and alloys, Zeszyt 21, Monografia.

Pietrowski S. (2001). Silumins. Łódź. Technical University Editorial. (in Polish).

Białobrzeski A., Pezda J., Ciućka T. (2007). Registration of crystallization process of ultra-lightweight Mg-Li alloys with use of ATND method. Archives of Foundry Engineering, 7 (3), 17-20.

Białobrzeski A., Saja K. (2011). Experimental stand for melting and casting of ultralight Mg-Li alloys. Archives of Foundry Engineering. 11 (3), 17-20.

Archives of Foundry Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.42

SCImago Journal Rank (SJR) 2016: 0.192
Source Normalized Impact per Paper (SNIP) 2016: 0.316

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 86 85 8
PDF Downloads 29 29 2