Structure Analysis and Diversity of Bacterial Community and their Resistance Determinants in a Nickel-Contaminated Soil in Southwest Slovakia

Open access


In this study we aimed to analyse the structure and diversity of overall bacterial community and its resistance determinants from nickel-contaminated soil in Slovakia by both, cultivation-dependent and independent approaches. The phylogeny was reconstructed using partial sequences of 16S rRNA (16S rDNA) and heavy-metal resistance genes from separated isolates and bacterial clones. A total of 518 bacterial sequences obtained from both, isolates and clones, represented 266 species belonging to 8 bacterial phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria (α-, β- and γ-classes), Verrucomicrobia, and one yet unclassified group. In addition, among isolates and clones, 49 different nccA-like genes were found in the final output. Majority of them were assigned to a system of transmembrane metal pumps. Our results demonstrate the fact that the nickel-contaminated soil is able to present very specific heavy-metal resistant bacterial community which can be used in different bioremediation processes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bamborough L. & Cummings S. P. 2009. The impact of increasing heavy metal stress on the diversity and structure of the bacterial and actinobacterial communities of metallophytic grassland soil. Biol. Fertil. Soils 45: 273-280.

  • Bohuš P. & Klinda J. 2010. Environmentálna regionalizácia Slovenskej republiky. Bratislava: MŽP SR Banská Bystrica SAŽP pp. 9-21. (in Slovak)

  • Bollmann A. Lewis K. & Epstein S. S. 2007. Incubation of environmental samples in a diffusion chamber increases the diversity of recovered isolates. Appl. Environ. Microbiol. 73: 6386-6390.

  • Brim H. Heyndrickx M. de Vos P. Wilmotte A. Springael D. Schlegel H. G. & Mergeay M. 1999. Amplified rDNA restriction analysis and further genotypic characterisation of metalresistant soil bacteria and related facultative hydrogenotrophs. Syst. Appl. Microbiol. 22: 258-268.

  • Cho J. Vergin K. Morris R. & Giovannoni S. 2004. Lentisphaera araneosa gen. nov. sp. nov a transparent exopolymer producing marine bacterium and the description of a novel bacterial phylum Lentisphaerae. Environ Microbiol 6: 611-621.

  • Ferrari B. C. Binnerup S. J. & Gillings M. 2005. Microcolony cultivation on a soil substrate membrane system select for previously uncultured soil bacteria. Appl. Environ. Microbiol. 71: 8714-8720.

  • Frey B. Stemmer M. Widmer F. Luster J. C. & Sperisen C. 2006. Microbial activity and community structure of a soil after heavy metal contamination in a model forest ecosystem. Soil Biol. Biochem. 38: 1745-1756.

  • Harichová J. Karelová E. Chovanová K. Stojnev T. Prokšová M. Brindza J. Brindza P. Tóth D. Pangallo D. & Ferianc P. 2006. Comparison of culturable Gram-negative bacterial community structures in the rhizosphere of three fruit plants. Biologia (Bratislava) 61: 663-670.

  • Harichová J. Karelová E. Pangallo D. & Ferianc P. 2012. Structure analysis of bacterial community and their heavy-metal resistance determinants in the heavy-metal-contaminated soil sample. Biologia (Bratislava) 67: 1038-1048.

  • Hohn M. W. Stadler P. Wu Q. L. & Pocki M. 2004. The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J. Microbiol. Methods 57: 379-390.

  • Hussein H. Farag S. & Moawad H. 2003. Isolation and characterization of Pseudomonas resistance to heavy metals contaminants. Arab. J. Biotechnol. 1: 13-22.

  • Iyaka A. Y. 2011. Nickel in soils: A review of its distribution and impacts. Sci. Res. Essays. 6: 6774-6777.

  • Kaeberlein T. Lewis K. & Epstein S. S. 2002. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science 296: 1127-1129.

  • Karelová E. Harichová J. & Ferianc P. 2010. Štruktúra a diverzita kultivovateľnej zložky bakteriálneho spoločenstva v pôde znečistenej ťažkými kovmi. Acta Environmentalica Universitatis Comenianae (Bratislava) 18: 79-91.

  • Karelová E. Harichová J. Stojnev T. Pangallo D. & Ferianc P. 2011. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. Biologia (Bratislava) 66: 18-26.

  • Keller M. & Zengler K. 2004. Tapping into microbial diversity. Nat. Rev. Microbiol. 2: 141-150.

  • Keramati P. Hoodaji M. & Tahmourespour A. 2011. Multimetal resistance study of bacteria highly resistant to mercury isolated from dental clinic effluent. Afr. J. Microbiol. Res. 5: 831-837.

  • Koepke B. Wilms R. Engelen B. Cypionka H. & Sass H. 2005. Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71: 7819-7830.

  • Lane D. J. 1991. 16S/23S rRNA sequencing. In: Stackebrandt E. Goodfellow M. (eds) Nucleic acid techniques in bacterial systematics John Wiley & Sons New York pp. 115-148.

  • Mason O. U. Hazen T. C. Sharon Borglin S. Chain P. S. G. Dubinsky E. A. Fortney J. L. Han J. Holman H.-Y. N. Hultman J. Lamendella R. Mackelprang R. Malfatti S. Tom L. M. Tringe S. G. Woyke T. Zhou J. Rubin E. M. & Jansson J. K. 2012. Metagenome metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 6: 1715-1727.

  • Mergeay M. Monchy S. Vallaeys T. Auquier V. Benotmane A. Bertin P. Taghavi S. Dunn J. Van Der Lelie D. & Wattiez R. 2003. Ralstonia metallidurans a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27: 385-410.

  • Nešťák L. Bejda M. Bezecný M. Hajdú Z. & Chmelo S. 2007. Územný plán mesta Sereď zmeny a doplnky 9c. 02/2007 časť C-Komplexná charakteristika a hodnotenie vplyvov na životné prostredie vrátane zdravia pp. 27-79. (in Slovak)

  • Nies D. H. 1999. Microbial heavy metal resistance. Appl. Microbiol. Biotechnol. 51: 730-750.

  • Nies D. H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313-339.

  • Palleroni N. J. 1997. Prokaryotic diversity and the importance of culturing. Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 72: 3-19.

  • Remenár M. Karelová E. Harichová J. Zámocký M. Kamlárová A. & Ferianc P. 2015. Isolation of previously uncultivable bacteria from a nickel contaminated soil using a diffusion-chamber-based approach. Appl. Soil Ecol. 95: 115-127.

  • Salvador M. Carolina G. & Jose E. 2007. Novel nickel resistance genes from the rhizosphere metagenome of plants adapted to acid mine drainage. Appl. Environ. Microbiol. 73: 6001-6011.

  • Shapiro E. Biezuner T. & Linnarsson S. 2013. Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14: 618-630.

  • Sherameti I. & Varma A. 2010. Soil heavy metals (Soil Biology). In: Sherameti I. & Varma A. (eds.) Series Soil Biology (Book 19). Springer 492 pp.

  • Stewart I. & Falconer I. R. 2008. Cyanobacteria and cyanobacterial toxins. In: Walsh P. J. Smith S. L. Fleming L. E. (eds) Oceans and human health: risks and remedies from the seas Academic Press pp. 271-296.

  • Šmejkalová M. Mikanová O. & Borůvka L. 2003. Effects of heavy metal concentrations on biological activity of soil micro-organisms. Plant Soil Environ. 7: 321-326.

  • Tamura K. Peterson D. Peterson N. Stecher G. Nie M. & Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood evolutionary distance and maximum parsimony methods. Mol. Biol. Evol. 28: 2731-2739.

  • Virender S. Chauhan P. K. & Kanta R. 2010. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Int. J. Pharm. Sci. Rev. Res. 3: 164-167.

  • Vivas A. Moreno B. del Val C. Macci C. Masciandaroc G. & Benitez E. 2008. Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J. Environ. Monit. 10: 1287-1296.

  • Wagner M. & Horn M. 2006. The Planctomycetes Verrucomicrobia Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr. Opin. Biotechnol. 17: 241-249.

  • Watve M. Shejval V. Sonawane C. Rahalka M. Matapurkar A. Schouche Y. Patole M. Phadnis N. Champhenka A. Damle K. Karandikar S. Kschirsagar V. & Jog M. 2000. The ‘K’ selected oligotrophic bacteria: a key to uncultured diversity? Curr. Sci. 78: 1535-1542.

  • Wu H. Zhao H. Wen C. Guo Y. Guo J. Xu M. & Li X. 2012. A comparative study of bacterial community structures in the sediments from brominated flame retardants contaminated river and non-contaminated reservoir. Afr. J. Microbiol. Res. 6: 3248-3260.

  • Wuertz S. & Mergeay M. 1997. The impact of heavy metals on soil microbial communities and their activities. In: Van Elsas J. D. Trevors J. T. Wellington E. M. H. (eds) Modern Soil Microbiology Marcel Dekker New York pp. 607-642.

  • Zhang H. B. Yang M. X. Shi W. Zheng Y. Tao T. & Zhao Z. W. 2007. Bacterial diversity in mine tailings compared by cultivation and cultivation-independent methods and their resistance to lead and cadmium. Microbial. Ecol. 54: 705-712.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 204 1
PDF Downloads 139 104 2