Trophic State of a Shallow Lake with Reduced Inflow of Surface Water

Open access

Abstract

According to the general classification of shallow eutrophic lakes, two alternative types are distinguished: phytoplankton-dominated and macrophyte-dominated lakes. The latter type is rare and currently endangered by human activity. In order to determine the effect of reduced inflow of surface water by an earth dyke on the lake trophic state, certain biological and physico-chemical parameters were evaluated. This work focuses on two lakes of similar morphometric characteristics situated in the agricultural landscape. The effect of the earth dyke on the trophic state was positively verified. The lake situated in the catchment basin, in which the inflow of surface water was reduced, was defined as meso-eutrophic, with a small amount of phytoplankton and high water transparency. The reference lake was highly eutrophic, with low water transparency and a large amount of phytoplankton. The water body surrounded by the earth dyke was macrophytes dominated (65% of the lake area), whereas the reference lake was a phytoplankton-macrophyte type (42% of the lake area). The trophic evaluation of a lake can be underestimated because of a significant amount of biogenic compounds accumulated in plant tissues. Thus, the values of Carlson’s indices in macrophyte-dominated lakes may not account for the total amount of nutrients in the water body.

[1] Asaeda, T. & Bon, T.V. (1997). Modeling the effects of macrophytes on algal blooming in eutrophic shallow lakes, Ecological Modeling, 104, 261–287.

[2] Canfield, D.E. Jr., Langeland, K.A., Maceina, M.J., Haller, W.T, Shireman, J.V. & Jones, J.R. (1983). Trophic state classification of lakes with aquatic macrophytes, Canadian Journal of Fisheries and Aquatic Sciences, 40, 1713–1718.

[3] Carlson, R.E. (1977). A trophic state index for lakes, Limnology and Oceanography, 22, 361–369.

[4] EC Parliament and Council (2000). Directive of the European Parliament and of the Council 2000/60/EC.

[5] Ciecierska, H. & Radwan, S. (2000). Zróżnicowanie fitocenotyczne litoralu jezior Pojezierza Łęczyńsko-Włodawskiego. In S. Radwan & Z. Lorkiewicz (Eds.), Problemy ochrony i użytkowania obszarów wiejskich o dużych walorach przyrodniczych (pp. 71–85). Wyd. UMCS, Lublin 2000.

[6] EEC Council Directive (1992). On the conservation of natural habitats and of wild fauna and flora. 1992/43/EEC.

[7] Fijałkowski, D. (1959). Szata roślinna jezior Łęczyńsko-Włodawskich i przylegających do nich torfowisk, Annales UMCS, Sec. B, 14, 131–204.

[8] Furtak, T., Sobolewski, W. & Turczyński, M. (1998). Charakterystyka zlewni jezior. In M. Harasimiuk, Z. Michalczyk & M. Turczyński (Eds.), Jeziora łęczyńsko-włodawskie. Monografia przyrodnicza (pp. 73–91). Biblioteka Monitoringu Środowiska, Wydawnictwo UMCS, Lublin 1998.

[9] Harper, D. (1992). Eutrophication of freshwaters (pp. 327). Chapman & Hall, London 1992.

[10] Hermanowicz, W., Dojlido, J., Dożańska, W., Koziorowski, B. & Zerbe, J. (1999). Fizyczno-chemiczne badanie wody i ścieków (pp. 556). Wyd. Arkady, Warszawa 1999.

[11] Horppila, J. & Nurminen, L. (2003). Effects of submerged macrophytes on sediment resuspension and internal phosphorus loading in Lake Hiidenvesi (southern Finland), Water Research, 37, 4468–4474, DOI:10.1016/S0043-1354(03)00405-6.

[12] Jeppesen, E., Lauridsen T.L., Kairesalo T. & Perrow M.R. (1998). Impact of submerged macrophytes on fish-zooplankton interactions in lakes. In E. Jeppesen, M. Søndergaard, M. Søndergaard & K. Christoffersen (Eds.), The structuring role of submerged macrophytes in lakes (pp. 91–114), Ecological Studies, 131.

[13] Jeppesen, E. (1999). Lake and catchment management in Denmark, Hydrobiologia, 395/396, 419–432.

[14] Kondracki, J. (2002). Geografia regionalna Polski (pp. 440). Wyd. Nauk. PWN, Warszawa 2002.

[15] Kornijów, R., Pęczuła, W., Lorens, B., Ligęza, S., Rechulicz, J. & Kowalczyk-Pecka, D. (2002). Shallow Polesie lakes from the view point of the alternative stable states theory, Acta Agrophysica, 68, 61–72.

[16] Kratzer, C.R. & Brezonik, P.L. (1981). A Carlson-type trophic state index for nitrogen in Florida lakes, Water Resources Bulletin, 17, 713–715.

[17] Lampert, W. & Sommer, U. (2001). Ekologia wód śródlądowych (pp. 415). Wyd. Nauk. PWN, Warszawa 2001.

[18] Madsen, J.D., Chambers, P.A, James, W.F, Koch, E.W. & Westlake, D.F. (2001). The interaction between water movement, sediment dynamics and submersed macrophytes, Hydrobiologia, 444, 71–84.

[19] Mencfel, R. (2011). Relationship between range of the euphotic zone and visibility of Secchi disc in three lakes of Łęczna-Włodawa Lake District, Teka Kom. Ochr. i Kształt. Środ. Przyr., 8, 97–103.

[20] Nakai, S., Inoue, I., Hosomi, M., Murakami, A. (1999). Growth inhibition of blue-green algae by allelopathic effects of macrophytes, Water Science and Technology, 39, 45–53, DOI:10.1016/j.bbr.2011.03.031.

[21] Nõges, P., Nõges, T., Tuvikene, L., Smal, H., Ligęza, S., Kornijów, R., Pęczuła, W., Bécares, E., Garcia-Criado, F., Alvarez-Carrera, C., Fernández-Alaéz, C., Ferriol, C., Miracle, M.R., Vicente, E., Romo, S., van Donk, E., van de Bund, W., Jensen, J-P., Gross, E. M., Hansson, L-A., Gyllström, M., Nykänen, M., de Eyto, E., Irvine, K., Stephen, D., Collings, S.E. & Moss, B. (2003). Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe, Hydrobiologia, 506–509, 51–58.

[22] Nush, E.A. (1980). Comparison of different methods for chlorophyll and pheopigment determination, Archiv für Hydrobiologie – BeiheftErgebnisse der Limnologie, 14, 14–36.

[23] OECD (1992). Eutrophication of waters. Monitoring, assessment and control. Technical Report, Environment Directorate, OECD, Paris 1992.

[24] Pasztaleniec, A. & Poniewozik, M. (2010). Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive – a comparison of approaches, Limnologica, 40, 251–259. DOI:10.1016/j.limno.2009.07.001.

[25] Patalas, K. (1960). Mieszanie wody jako czynnik określający intensywność krążenia materii w różnych morfologicznie jeziorach okolic Węgorzewa, Roczniki Nauk Rolniczych, 77B, 223–242.

[26] Pawlik-Skowrońska, B., Kornijów, R. & Pirszel, J. (2010). Sedimentary imprint of cyanobacterial blooms – a new tool for insight into recent history of lakes, Polish Journal of Ecology, 58, 4, 663–670.

[27] Radwan, S. & Kornijów, R. (1998). Hydrobiologiczne cechy jezior – stan aktualny i kierunki zmian. In M. Harasimiuk, Z. Michalczyk & M. Turczyński (Eds.), Jeziora łęczyńsko-włodawskie. Monografia przyrodnicza (pp. 129–144), Biblioteka Monitoringu Środowiska, Wydawnictwo UMCS, Lublin 1998.

[28] Rejewski, M. (1981). Roślinność jezior rejonu Laski w Borach Tucholskich (pp. 178). Uniwersytet Mikołaja Kopernika. Toruń 1981.

[29] Sand-Jensen, K. & Søndergaard, M. (1981). Phytoplankton and epiphyte development and their shading effect on submerged macrophytes in lakes of different nutrient status, Internationale Revue der gesamten Hydrobiologie und Hydrographie, 66, 529–552.

[30] Scheffer, M., Hosper, S.H., Meijer, M-L., Moss, B. & Jeppesen, E. (1993). Alternative equilibria in shallow lakes, Trends in Ecology & Evolution, 8, 275–279, DOI:10.1016/0169-5347(93)90254-M.

[31] Sokal, R.R. & Rohlf, F.J. (1995). Biometry (pp. 887). W.H. Freeman and Company, New York 1995.

[32] Wallsten, M & Forsgren, P.O. (1989). The effects of increased water level on aquatic macrophytes, Journal of Aquatic Plant Management, 27, 32–37.

[33] Wilgat, T., Michalczyk, Z., Turczyński, M. & Wojciechowski, K. (1991). Jeziora łęczyńsko-włodawskie, Studia Ośrodka Dokumentacji Fizjograficznej, 19, 23–140.

[34] Wojciechowska, W. & Solis, M. (2009). Glony pro- i eukariotyczne jezior Pojezierza Łęczyńsko-Włodawskiego (pp. 86). Wyd. KUL, Lublin 2009.

[35] Wojciechowski, I., Wojciechowska, W., Czernaś, K., Galek, J. & Religa, K. (1988). Changes in phytoplankton over a ten-year period in the lake undergoing de-eutrophication due to surrounding peat bogs, Journal of Aquatic Plant Management, 78, 373–383.

Archives of Environmental Protection

The Journal of Institute of Environmental Engineering and Committee of Environmental Engineering of Polish Academy of Sciences

Journal Information


IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.371
Source Normalized Impact per Paper (SNIP) 2017: 0.737

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 140 21
PDF Downloads 55 46 8