Application of a Hybrid Uf-Ro Process to Geothermal Water Desalination. Concentrate Disposal and Cost Analysis

Open access


M embrane-based water desalination processes and hybrid technologies are often considered as a technologically and economically viable alternative for desalination of geothermal waters. This has been confirmed by the results of pilot studies concerning the UF-RO desalination of geothermal waters extracted from various geological structures in Poland. The assessment of the feasibility of implementing the water desalination process analysed on an industrial scale is largely dependent on the method and possibility of disposing or utilising the concentrate. The analyses conducted in this respect have demonstrated that it is possible to use the solution obtained as a balneological product owing to its elevated metasilicic acid, fluorides and iodides ions content. Due to environmental considerations, injecting the concentrate back into the formation is the preferable solution. The energy efficiency and economic analysis conducted demonstrated that the cost effectiveness of implementing the UF-RO process in a geothermal system on an industrial scale largely depends on the factors related to its operation, including without limitation the amount of geothermal water extracted, water salinity, the absorption parameters of the wells used to inject water back into the formation, the scale of problems related to the disposal of cooled water, local demand for drinking and household water, etc. The decrease in the pressure required to inject water into the formation as well as the reduction in the stream of the water injected are among the key cost-effectiveness factors. Ensuring favourable desalinated water sale terms (price/quantity) is also a very important consideration owing to the electrical power required to conduct the UF-RO process.

[1] Barbacki, A. (2010). Geological and technical aspects of geothermal energy utilization in South-East Poland, Environment Protection Engineering, 36, 1, 25–34.

[2] Bodzek, M. & Konieczny, K. (2011). Membrane techniques in the removal of inorganic anionic micropollutants from water environment – state of the art, Archives of Environmental Protection, 37, 2, 15–29.

[3] Dulewski, J. & Tomaszewska, B. (2012). Kompleksowe wykorzystanie i zagospodarowanie ochłodzonych wód termalnych na tle uwarunkowań prawnych. Miesięcznik Wyższego Urzędu Górniczego, 4, 10–16.

[4] Gallup, D.L. (2007). Treatment of geothermal waters for production of industrial, agricultural or drinking water, Geothermics, 36, 473–483.

[5] Kabay, N., Yilmaz, I., Yamac, S., Samatya, S., Yuksel, M., Yuksel, U., Arda, M., Saglam, M., Iwanaga, T. & Hirowatari, K. (2004). Removal and recovery of boron from geothermal wastewater by selective ion exchange resins – I. Laboratory tests, Reactive and Functional Polymers, 60, 163–170.

[6] Kabay, N., Yilmaz, I., Yamac, S., Yuksel, M., Yuksel, U., Yildirim, N., Aydogdu, O., Iwanaga, T. & Hirowatari, K. (2004). Removal and recovery of boron from geothermal wastewater by selective ion-exchange resins – II. Field tests, Desalination, 167, 427–438.

[7] Kania, J., Rozanski, K., Witczak, S. & Zuber, A. (2006). On conceptual and numerical modeling of flow and transport in groundwater with the aid of tracers: a case study. In: Soil and Water Pollution Monitoring, Protection and Remediation. Proceedings of the NATO Advanced Research Workshop on Viable Methods of Soil and Water Pollution Monitoring, Protection and Remediation, Krakow. NATO Science Series: IV: Earth and Environmental Sciences, 69, 199–208.

[8] Kania, J., Haładus, A. & Witczak S. (2006). On Modelling of Ground and Surface Water Interactions. In: Baba A., Howard K.W.F., Gunduz O. (Eds.) Groundwater and Ecosystems. Proceedings of the NATO Advanced Research Workshop on Groundwater and Ecosystems, Canakkale, Turkey, NATO Science Series: IV. Earth and Environmental Sciences, 70, 183–194.

[9] Kania, J., Witczak, S. & Różański, K. (2011). Classification of Groundwater Quality Based on Variability of Hydrogeochemical Environment. In: Baba A., Tayfur G., Gunduz O., Howard K.W.F., Friedel M.J., Chambel A. (Eds.). Climate Change and its Effects on Water Resources, NATO Science for Peace and Security Series C: Environmental Security, 3, 247–257.

[10] Kmiecik, E., Zdechlik, R. & Drzymała, M. (2013). Ocena stanu chemicznego wód podziemnych w zlewni Sękówki, Biuletyn Państwowego Instytutu Geologicznego, 456, 1, 287–291.

[11] Öner, Ş.G., Kabay, N., Güler, E., Kitiş, M. & Yüksel M. (2011). A comparative study for the removal of boron and silica from geothermal water by cross-flow flat sheet reverse osmosis method, Desalination, 283, 10–15.

[12] Pająk, L. & Bujakowski, W. (2013). Energia geotermalna w systemach binarnych, Przegląd Geologiczny, 61, 11/2, 696–702.

[13] Pająk, L. & Barbacki, A. (2013). Ocena możliwości akumulacji ciepła w rozległych systemach przesyłowych współpracujących z hybrydowymi źródłami wykorzystującymi zasoby energii odnawialnej, Ciepłownictwo Ogrzewnictwo Wentylacja, 7, 44, 267–273.

[14] Péréz-González, A., Urtiaga, A.M., Ibánez, R. & Ortiz, I. (2012). State of the art and review on the treatment technologies of water reverse osmosis concentrates, Water Research, 46, 267–283.

[15] Rozporządzenie Ministra Zdrowia z dnia z dnia 13 kwietnia 2006 r. w sprawie zakresu badańniezbędnych do ustalenia właściwości leczniczych naturalnych surowców leczniczych i właściwości leczniczych klimatu, kryteriów ich oceny oraz wzoru świadectwa potwierdzającego te właściwości (Dz. U z 2006 r. Nr 80 poz. 565).

[16] Rybach, L. (2003). Geothermal energy: sustainability and the environment, Geothermics, 32, 463–470.

[17] Sowiżdżał, A., Papiernik, B., Machowski, G. & Hajto, M. (2013). Characterization of petrophysical parameters of the Lower Triassic deposits in a prospective location for Enhanced Geothermal System (central Poland), Geological Quarterly, 57, 4, 729–744, DOI:

[18] Şimşek, Ş., Yıldırım, N. & Gülgör, A. (2005). Developmental and environmental effects of the Kızıldere geothermal power project, Turkey, Geothermics 34, 239–256.

[19] Tomaszewska, B. & Bodzek, M. (2013). Desalination of geothermal waters using a hybrid UF-RO process. Part I: Boron. removal in pilot-scale tests, Desalination, 319, 99–106.

[20] Tomaszewska B. & Bodzek, M. (2013). Desalination of geothermal waters using a hybrid UF-RO process. Part II: Membrane scaling after pilot-scale tests, Desalination, 319, 107–114.

[21] Tomaszewska B. & Bodzek, M. (2013). The removal of radionuclides during desalination of geothermal waters using BWRO system, Desalination, 309, 284–290.

[22] Tomaszewska, B. & Pająk, L. (2012). Dynamics of clogging processes in injection wells used to pump highly mineralized thermal walters into the sandstone structures lying under the Polish Lowlands, Archives Of Environmental Protection, 38, 3, 105–117.

[23] Tomaszewska, B. (2011). The use of ultrafiltration and reverse osmosis in the desalination of low mineralized geothermal waters, Archives Of Environmental Protection, 37, 3, 63–77.

[24] Tomaszewsk, B. & Pajak, L. (2012). Geothermal water resources management – economic aspects of their treatment, Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 28, 4, 59–70.

[25] Tomaszewska, B. & Pajak, L. (2013). Cooled and desalinated thermal water utilization in the podhale heating system, Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 29, 1, 127–139.

[26] Voutchkov, N. (2011). Overview of seawater concentrate disposal alternatives, Desalination, 273, 205–219.

[27] Wiatkowski, M. (2010). Impact of the Small Water Reservoir Psurów on the Quality and Flows of the Prosna River, Archives of Environmental Protection, 36, 3, 84–96.

[28] Witczak, S., Szklarczyk, T., Kmiecik, E., Szczepańska, J., Zuber, A., Różański, K. & Duliński, M. (2007). Hydrodynamic modelling, environmental tracers and hydrochemistry of a confined sandy aquifer (Kędzierzyn-Głubczyce Subtrough, SW Poland), Geological Quarterly, 51, 1, 1–16.

[29] Zdechlik, R., Drzymała, M. & Wątor, K. (2013). Praktyczne aspekty opróbowania wód w systemie monitoringu wód podziemnych, Biuletyn Państwowego Instytutu Geologicznego, 456, 2, 659–663.

Archives of Environmental Protection

The Journal of Institute of Environmental Engineering and Committee of Environmental Engineering of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.708
5-year IMPACT FACTOR: 0.835

CiteScore 2017: 1.01

SCImago Journal Rank (SJR) 2017: 0.371
Source Normalized Impact per Paper (SNIP) 2017: 0.737

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 221 178 17
PDF Downloads 89 78 9