Measurement-based harmonic current modeling of mobile storage for power quality study in the distribution system

Open access

Abstract

Electric vehicles (EVs) can be utilized as mobile storages in a power system. The use of battery chargers can cause current harmonics in the supplied AC system. In order to analyze the impact of different EVs with regardto their number and their emission of current harmonics, a generic harmonic current model of EV types was built and implemented in the power system simulation tool PSS®NETOMAC. Based on the measurement data for different types of EVs three standardized harmonic EV models were developed and parametrized. Further, the identified harmonic models are used by the computation of load flow in a modeled, German power distribution system. As a benchmark, a case scenario was studied regarding a high market penetration of EVs in the year 2030 for Germany. The impact of the EV charging on the power distribution system was analyzed and evaluated with valid power quality standards.

[1] Nationalen Plattform Elektromobilitaet (NPE), The German Standardization Roadmap for Electromobility - Version 2, Gemeinsame Geschäftsstelle Elektromobilitaet der Bundesregierung (2012).

[2] Geske M., Komarnicki P., Stötzer M., Styczynski Z.A., Modeling and simulation of electric car penetration in the distribution power system Case study, Proceedings - International Symposium: Modern Electric Power Systems, MEPS'10, no. 6007188 (2010).

[3] Wenge C., Optimaler Betrieb von mobilen Speichern im Smart Grid. -Mobilitätsleitwarte-, Res Electricae Magdeburgenses, vol. 53, ISBN: 978-3-944722-01-6 (2013).

[4] Naumann A., Bielchev I., Voropai N., Styczynski Z., Smart grid automation using IEC 61850 and CIM standards, Control Engineering Practice, vol. 25, no 1, pp. 102-111 (2014).

[5] Lipiec K., Komarnicki P., Modeling storage characteristics of electric vehicles in the grid, Vehicle Power and Propulsion Conference (VPPC), 2010 IEEE (2010).

[6] Liu Y.-J., Chang T.-P., Chen H.-W., Chang T.-K., Lan P.-H., Power quality measurements of low-voltage distribution system with smart electric vehicle charging infrastructures, Proceedings of International Conference on Harmonics and Quality of Power, ICHQP, no. 6842879, pp. 631635 (2014).

[7] Noce C., Riva S., Sapienza G., Preliminary tests results about E-car harmonic emissions IET Conference Publications, 2013 (615 CP), no. 0920 (2013).

[8] Käbisch M., Heuer M., Heideck G., Styczynski Z.A., Batteriesysteme für Elektrofahrzeuge und als Energiespeicher im Netz, Internationaler ETG-Kongress (2009).

[9] Jia D.M., Guo C.L., Fan Y.B., Tang Z.C. Analysis on-board charger to the influence of power quality, Advanced Materials Research, vol. 724-725, pp. 1330-1335 (2013).

[10] Yeh Y.-C., Meyer G.G., Meyer-Zhao Z., Tsai M.-S., Simulation and evaluation of charging control systems for electric vehicle car parks, 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013, no. 6652247 (2013).

[11] Burgholte A., Power Quality Beeinflussung durch Oberschwingungen, University of Applied Science Oldenburg (2012).

[12] Pluntke H., Stoerfestigkeitsuntersuchung von typischen Niederspannungshaushaltsgeräten, Ottovon- Guericke-University Magdeburg, diploma thesis, Magdeburg (2010).

[13] Heidarian T., Joorabian M., Reza A., The Effect of Plug-in Electric Vehicles on Harmonic Analysis of Smart Grid, International Journal of Emerging Electric Power Systems, ISSN (Online) 1553- 779X, ISSN (Print) 2194-5756 (2015).

[14] Unger C., Naumann A., Styczynski Z.A., Komarnicki P., Auswirkungen des Anschlusses von Elektrofahrzeugen auf die Spannungsqualität von Niederspannungsnetzen, VDE-Kongress, Leipzig, Germany (2010).

[15] Sheikhi A., Maani A., Ranjbar A.M., Evaluation of intelligent distribution network response to plug-in hybrid electric vehicles, 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013, no. 6652184 (2013).

[16] Turker H., Hably A., Bacha S., Smart charging of plug-in hybrid electric vehicles (PHEVs) on the residential electric grid regarding the voltage plan, 2013 IEEE Energy Conversion Congress and Exposition, ECCE 2013, no. 6647400, pp. 5173-5178 (2013).

[17] Wenge C., Arendarski B., Haensch K., Naumann A., Komarnicki P., Electric Vehicle Simulation Models for Power System Applications, IEEE PES General Meeting 2012, San Diego, CA USA (2012).

[18] Wenge C., Heideck G., Styczynski Z.A., Stromversorgungseinrichtung für Elektro-Straßenfahrzeuge an der Otto-von-Guericke-Universität Magdeburg, 1.Power & Energy Summer Summit 2009 (PESS'09), IEEE Studentbranch Ilmenau, Ilmenau, Germany (2009).

[19] Winkler T., Komarnicki P., Mueller G., Heideck G., Heuer M., Styczynski Z.A., Electric vehicle charging stations in Magdeburg, Vehicle Power and Propulsion Conference 2009, VPPC '09. IEEE (2009).

[20] Heuer J., Komarnicki P., Styczynski Z.A., Integration of electrical vehicles into the smart grid in the Harz.EE-mobility research project, IEEE Power and Energy Society General Meeting, no. 6039147 (2011).

[21] Hänsch K., Naumann A., Stötzer M., Komarnicki P., Kutzler T., Elektromobilitätssystem Harz/ Magdeburg - Komponenten und Schnittstellen, 16. Magdeburger Logistiktage „Sichere und nachhaltige Logistik“, Magdeburg, Germany, ISBN 978-3-8396-0281-2, pp. 41-46 (2011).

[22] Roehrig C., Rudion K., Styczynski Z.A., Nehrkorn H.-J., Fulfilling the Standard EN 50160 in Distribution Networks with a High Penetration of Renewable Energy System, IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany (2012).

[23] DIN EN 50160:2011-02, Voltage characteristics of electricity supplied by public distribution networks (2011).

[24] DIN EN 61000-3-2:2006, Electromagnetic compatibility (EMC) - Part 3-2: Limits - Limits for harmonic current emissions (equipment input current <= 16 A per phase) (2015).

[25] DIN EN 61000-3-12, Electromagnetic compatibility (EMC) - Part 3-12: Limits - Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current > 16 A and <= 75 A per phase (2012).

[26] Wenge C., Stötzer M., Winkler T., Komarnicki P., Power Quality Measurements of Electric Vehicles in the Low Voltage Power Grid, IEEE Electrical Power Quality and Utilization 2011 (EPQU'11), Lisbon, Portugal (2011).

[27] Dzieni C., Komarnicki P., Styczynski Z.A., A method for optimally localizing power quality monitoring devices in power systems, 2007 IEEE Lausanne POWERTECH, Proceedings, no. 4538541, pp. 15221527 (2007).

[28] Kasikc I, Darwish M., Mehta P., Modelling and Analysis of Power Systems Loads and Harmonic Flow Calculations, ELECO99 International Conference on Electrical and Electronics Engineering, E02.50/A2-27 (1999).

[29] Mombauer W., Week K.-H., Load modelling for harmonic flow calculations, European Transactions on Electrical Power (2007).

[30] Gonnet G.H., Scholl R., Scientific computation, pp. 1236 (2009).

[31] Scheffler J., Bestimmung der maximal zulässigen Netzanschlussleistung photovoltaischer Energiewandlungsanlagen in Wohnsiedlungsgebieten, Dissertation, Technischen Universität Chemnitz, Germany (2002).

[32] LV POWER CABLES, DATA SHEET- NFA2X 0.6/1kV, according to VDE 0276 - Part 626, Kabelwerk EUPEN cable AG, https://www.eupen.com (2016).

[33] Richte J., Lindenberger D., Potentiale der Elektromobilität bis 2050. Eine szenarienbasierte Analyse der Wirtschaftlichkeit, Umweltauswirkungen und Systemintegration, Energiewirtschaftliches Institut (EWI) an der Universität zu Köln, „Initiative Elektrofahrzeuge intelligent Am Netz“ (ELAN 2020) (2010).

[34] Komarnicki P., Lombardi P., Styczynski Z.A., Electric Energy Storage Systems. Flexibility Options for Smart Grids, Springer-Verlag Berlin Heidelberg, ISBN 978-3-662-53274-4 (2017).

[35] Styczynski Z.A., Stötzer M., Müller G., Komarnicki P., Belmans R., Driesen J., Hansen A.B., Pecas Lopes J., Hatziargyriou N., Challenges and barriers of integrating e-cars into a grid with high amount of renewable generation, 44th International Conference on Large High Voltage Electric Systems 2012, p. 9 (2012).

Archives of Electrical Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.238
Source Normalized Impact per Paper (SNIP) 2016: 0.535

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 222 222 13
PDF Downloads 81 81 7