Using the phased array antenna to increase geometric size of the interrogation zone in a UHF RFID system

Open access

Abstract

An attempt to increase the geometric size of the interrogation zone in UHF RFID systems with a phased array antenna is presented in this paper. The interrogation zone should be as large as possible. However, energy can be transferred to transponders only to a limited distance. The greatest flexibility in developing RFID applications and shaping the interrogation zone can be achieved using a phased array antenna. The perceived issues have been effectively dealt with and the solution has been proposed on the basis of an elaborated model. Conducted studies have been used to develop a software tool in the Mathcad environment. The research results are analyzed in detail for different system configurations and can be implemented in practical projects to be developed in cooperation with the industry.

[1] Finkenzeller K., RFID Handbook, 3-rd ed., Wiley (2010).

[2] Ustundag A., The Value of RFID, Benefits vs. costs, Springer-Verlag (2013).

[3] Costa C., Antonucci F., Pallottino F. et al., A Review on agri-food supply chain traceability by means of RFID technology, Food Bioprocess Technol., vol. 6, no. 2, pp. 353-366 (2013).

[4] Wheeler M., Automating processes with RFID, Global Identification, vol. Feb., pp. 10-13 (2013).

[5] GS1 EPCglobal: EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID, Specification for RFID Air Interface Protocol for Communications at 860 MHz - 960 MHz, ver. 2.0.0 (2013).

[6] Longfei L., Qishan Z., Design and implementation of a long-range RFID reader, in proc. of the 10th International Conference on Electronic Measurement & Instruments (ICEMI), © ICEMI (2011), DOI: 10.1109/ICEMI.2011.6037735

[7] Sabesan S., Crisp M.J., Penty R.V., White I.H., Wide Area Passive UHF RFID System Using Antenna Diversity Combined With Phase and Frequency Hopping, in IEEE Transactions on Antennas and Propagation (TAP), © TAP (2014), DOI: 10.1109/TAP.2013.2290114

[8] Azzouzi S., Cremer M., Dettmar U., Kronberger R., Knie T., New Measurement Results for the Localization of UHF RFID Transponders Using an Angle of Arrival (AoA) Approach, in proc. of the IEEE International Conference on RFID, © RFID (2011), DOI: 10.1109/RFID.2011.5764607

[9] Jankowski-Mihułowicz P., Węglarski M., Determination of 3-dimentional interrogation zone in anticollision RFID systems with inductive coupling by using monte carlo method, Acta Physica Polonica A, vol. 121, no. 4, pp. 936-940 (2012).

[10] Shi J., Qing X., Chen Z. N., Electrically Large Zero-Phase-Shift Line Grid-Array UHF Near-Field RFID Reader Antenna, IEEE Transactions on Antennas and Propagation (TAP), © TAP (2014), DOI: 10.1109/TAP.2014.2299824

[11] Wang-Sang L., Seung-Tae K., Won-Seok L., Jong-Won Y., Hemispheric coverage multi-beam switched antenna array using a 4-port feeding network for UHF RFID dead zone avoidance, in proc. of the Asia-Pacific Microwave Conference Proceedings (APMC), © APMC (2013), DOI: 10.1109/APMC.2013.6695111

[12] Wang-Sang L., Hyun-Sung T., Jong-Won Y., Quadruple-feed beam-controlled antenna array for the localisations of ultra-high-frequency radio-frequency identification tags, IET Microwaves, Antennas & Propagation (IET-MAP), © IET-MAP (2015), DOI: 10.1049/iet-map.2014.0158

[13] Zieniutycz W., Ed., The antenna of the radar technique beam steering, Warsaw: WKŁ (2012).

[14] Li X., Liao J., Yuan Y., Yu D., Eye-shaped segmented reader antenna for near-field UHF RFID applications, Progress In Electromagnetics Research, vol. 114, pp. 481-493 (2011).

[15] Dhaouadi M., Mabrouk M., Vuong T.P., de Souza A.C., Ghazel A., A capacitively-loaded loop antenna for UHF near-field RFID reader applications, IEEE Radio and Wireless Symposium (RWS), © RWS (2015), DOI: 10.1109/RWS.2015.7129755.

[16] Caso R., Michel A., Rodriguez-Pino M., Nepa P., Dual-Band UHF-RFID/WLAN Circularly Polarized Antenna for Portable RFID Readers, IEEE Transactions on Antennas and Propagation (TAP), © TAP (2014), DOI: 10.1109/TAP.2014.2303971.

[17] De Vita G., Iannaccone G., Design criteria for the RF section of UHF and microwave passive RFID transponders, IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2978-2990 (2005).

[18] Balanis C., Antenna Theory, 3-rd ed., Wiley (2005).

[19] Dobkin, D., The RF in RFID, UHF RFID in Practice, Newnes (2012).

[20] Jankowski-Mihułowicz P., Kawalec D., Węglarski M., The Idea of Enhancing Directional Energy Radiation by a Phased Antenna Array in UHF RFID System, International Journal of Electronics and Telecommunications (2016), DOI: 10.1515/eletel-2016-0015.

[21] His-Tseng C., Ming-Yu L., Chien-Te Y., Implementation scenario of phase array antennas with beam-scan functionality for RFID applications, 10th European Conference on Antennas and Propagation (EuCAP), IEEE Conference Publications, © EuCAP 2016, DOI: 10.1109/EuCAP. 2016. 7481528.

[22] Jankowski-Mihułowicz P., Węglarski M., Pitera G., Kawalec D., Lichoń W., Development board of the autonomus semi-passive RFID transponder, Bulletin of The Polish Academy of Sciences Technical Sciences (BPASTS), © BPASTS (2016), DOI: 10.1515/bpasts-2016-0073.

Archives of Electrical Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.238
Source Normalized Impact per Paper (SNIP) 2016: 0.535

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 173 173 13
PDF Downloads 58 58 7