Scaling-based prediction of magnetic anisotropy in grain-oriented steels

Open access


The paper presents the scaling-based approach to analysis and prediction of magnetic anisotropy in grain-oriented steels. Results of the anisotropy scaling indicate the existence of two universality classes. The hybrid approach to prediction of magnetic anisotropy, combining the scaling analysis with the ODFs method, is proposed. This approach is examined in prediction of angular dependencies of magnetic induction as well as magnetization curves for the 111-35S5 steel. It is shown that it is possible to predict anisotropy of magnetic properties based on measurements in three arbitrary directions for φ = 0°, 60° and 90°. The relatively small errors between predicted and measured values of magnetic induction are obtained.

[1] Fiorillo F., Anisotropy and magnetization process in soft magnets: Principles, experiments, applications, Journal of Magnetism and Magnetic Materials, vol. 304, pp. 139-144 (2006).

[2] Tumański S., Investigations of the anisotropic behaviour of SiFe steel, Journal of Magnetism and Magnetic Materials, vol. 254-255, pp. 50-53 (2003).

[3] Soiński M., Bak Z., Bargiel P., Anisotropy of magnetic properties in thin electrical sheets, IEEE Transactions on Magnetics, vol. 26, no. 6, pp. 3076-3079 (1990).

[4] Soiński M., Moses A.J., Anisotropy of iron-based soft magnetic materials (Chapter 4), Handbook of magnetic materials, vol. 8, North-Holland Elsevier, pp. 325-414 (1995).

[5] Fryskowski B., Experimental evaluation of magnetic anisotropy in electrical steel sheets, Journal of Magnetism and Magnetic Materials, vol. 320, pp. 515-552 (2008).

[6] Emura M., de Campos M.F., Landgraf F.J.G., Teixeira J.C., Angular dependence of magnetic properties of 2% silicon electrical steel, Journal of Magnetism and Magnetic Materials, vols. 226-230, pp. 1524-1526 (2001).

[7] Mazgaj W., Warzecha A., Influence of electrical steel sheet textures on their magnetization curves, Archives of Electrical Engineering, vol. 62, no. 3, pp. 425-437 (2013).

[8] Najgebauer M., Szczygłowski J., Kapłon A., Soft magnetic materials for energy-efficient electric motors, the 12th Conference on Selected Problems of Electrical Engineering and Electronics (WZEE2015), Kielce, Poland, pp. 1-4 (2015).

[9] Péra T., Ossart F., Waeckerlé Th., Numerical representation for anisotropic materials based on coenergy modeling, Journal of Applied Physics, vol. 73, no. 10, pp. 6784-6786 (1993).

[10] Biró O., Ausserhofer S., Preis K., Chen Y., A modified elliptic model of anisotropy in nonlinear magnetic materials, Proceedings of 8th International Symposium on Electric and Magnetic Field (EMF’2009), Mondovi, Italy, pp. 25-26 (2009).

[11] Chwastek K., Najgebauer M., Szczygłowski J., Wilczyński W., Modelling the influence of anisotropy on magnetic properties in grain-oriented steels, Przegląd Elektrotechniczny, vol. 87, no. 3, pp. 126-128 (2011).

[12] Chwastek K., Anisotropic properties of non-oriented steel sheets, IET Electronic Power Applications, vol. 7, no. 7, pp. 575-579 (2013).

[13] Bunge H.J., Texture analysis in materials science: mathematical methods, Butterworth (1982).

[14] Bunge H.J., The basic concepts of texture investigation in polycrystalline materials, Steel Research, vol. 62, no. 12, pp. 530-541 (1991).

[15] de Campos M.F., Anisotropy of steel sheets and consequence for Epstein test, Proceeding of XVIII IMEKO World Congress “Metrology for a Sustainable Development”, Rio de Janeiro, Brazil, p. 6 (2006).

[16] Yonamine T., de Campos M.F., Castro N.A., Landgraf F.J.G., Modeling magnetic polarization J50 by different methods, Journal of Magnetism and Magnetic Materials, vol. 304, pp. e589-e592 (2006).

[17] Chwastek K., Baghel A., De Campos M., Kulkarni S.V., Szczygłowski J., A Description for the Anisotropy of Magnetic Properties of Grain-oriented Steels, IEEE Transactions on Magnetics, vol. 51, no. 12, pp. 6000905.1-5 (2015).

[18] Chwastek K., Baghel A.P.S., Wodzyński A., Kulkarni S.V., Anisotropic properties of electrical steels, 6th International Conference on Computational Problems of Electrical Engineering (CPEE), Lviv, Ukraine, pp. 21-23 (2015).

[19] Cornut B., Kedous-Lebouc A., Waeckerlé Th., From metallurgy to modelling electrical steels: a multiple approach to their behaviour and used based on physics and experimental investigations, Journal of Magnetism and Magnetic Materials, vol. 160, pp. 102-108 (1996).

[20] Pluta W., Angular properties of specific total loss components under axial magnetization in grainoriented electrical steel, IEEE Transactions on Magnetics, vol. 52, issue 4, no. 6300912 (2016).

[21] Paltanea G., Paltanea V., Gavrila H., Popovici D., Ionescu G., Magnetic anisotropy in grain oriented steels cut through mechanical punching and electro-erosion technologies, AIP Conference Proceedings, vol. 1809, pp. 020041.1-6 (2017).

[22] Fiorillo F., Dupré L.R., Appino C., Rietto A.M., Comprehensive model of magnetization curve, hysteresis loops, and losses in any direction in grain-oriented Fe-Si, IEEE Transactions on Magnetics, vol. 38, no. 3, 1467-1475 (2002).

[23] Fiorillo F., Appino C., Beatrice C., Garsia F., Magnetization process under generically directed field in GO Fe-(3 wt%)Si laminations, Journal of Magnetism and Magnetic Materials, vols. 242-245, pp. 257-260 (2002).

[24] Tumański S., Handbook of magnetic measurements, CRC Press (2011).

[25] Tumański S., Investigations of two-dimensional properties of selected electrical steel samples by means of the Epstein method, 7th Workshop on 2D Measurements, Lüdenscheid, Germany, pp. 151-157 (2002).

[26] Widom B., Equation of state in the neighbourhood of the critical point, Journal of Chemical Physics, vol. 43, pp. 3898-3905 (1965).

[27] Stanley H.E. Introduction to phase transitions and critical phenomena, Clarendon Press (1971).

[28] Klamut J., Durczewski K., Sznajd J., Introduction to the physics of phase transition, Zakład Narodowy im. Ossolińskich (in Polish), Wrocław (1978).

[29] Stanley H.E., Scaling, universality and renormalization: three pillars of modern critical phenomena, Reviews of Modern Physics, vol. 71, no. 2, pp. S358-S366 (1999).

[30] Sokalski K., Szczygłowski J., Najgebauer M., Wilczyński W., Losses scaling in soft magnetic materials, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 26, no. 3, pp. 640-649 (2007).

[31] Najgebauer M., Scaling theory and its chosen applications in electromagnetism, Przegląd Elektrotechiczny, vol. 84, no. 12, pp. 213-216 (2008).

[32] Najgebauer M., Application of fractional scaling in modelling of magnetic power losses, Acta Physica Polonica A, vol. 128, pp. 107-110 (2015).

[33] Gozdur R., Najgebauer M., Measurements and scaling analysis of power losses in La-containing alloys, Journal of Electrical Engineering, vol. 66, no. 7/s, pp. 37-40 (2015).

[34] Najgebauer M., Scaling-based analysis and modelling of power losses in amorphous and nanocrystalline alloys, Acta Physica Polonica A, vol. 131, no. 5, pp. 1125-1127 (2017).

[35] Najgebauer M., The concept of scaling analysis in describing the properties of soft magnets, Solid State Phenomena, vol. 220-221, pp. 646-651 (2015).

[36] Najgebauer M., Sokalski K., Szczygłowski J., The modified scaling procedure in coercivity modelling, Archives of Electrical Engineering, vol. 64, no. 3, pp. 351-359 (2015).

[37] Najgebauer M., Fractional scaling of magnetic coercivity in electrical steels, Acta Physica Polonica A, vol. 131, no. 4, pp. 633-635 (2017).

[38] Mayergoyz I.D., Adly A.A., Korman C., Huang M., Krafft C., Scaling and data collapse in magnetic viscosity, Journal of Applied Physics, vol. 85, pp. 4358-4360 (1999).

[39] Mayergoyz I.D., Adly A.A., Huang M.W., Krafft C., Scaling and data collapse in magnetic viscosity (creep) of superconductors, IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3208-3210 (2000).

[40] Adedoyin A., Andrei P., Data collapse and viscosity in three-dimensional magnetic hysteresis modeling, IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 3165-3168 (2008).

[41] Takahashi S., Kobayashi S., Shishido T., A scaling power-law relation in magnetic minor hysteresis loops in Fe and Ni metals, Journal of Physics: Condensed Matter, vol. 20, pp. 035217/ 1-035217/6 (2008).

[42] Kobayashi S., Kikuchi N., Takahashi S., Kikuchi H., Kamada Y., Scaling analysis of minor hysteresis loops in ferromagnets with large uniaxial anisotropy, Journal of Magnetism and Magnetic Materials, vol. 322, no. 9-12, pp. 1515-1518 (2010).

[43] Kobayashi S., Tsukidate S., Kamada Y., Kikuchi H., Ohtani T., Investigation of scaling laws in frequency-dependent minor hysteresis loops for ferromagnetic steels, Journal of Magnetism and Magnetic Materials, vol. 324, no. 2, pp. 215-221 (2012).

[44] Kobayashi S., Takahashi S., Ishibashi Y., Hysteresis scaling behavior in a remanent magnetization state, IEEE Transactions on Magnetics, vol. 48, no. 4, pp. 3165-3168 (2012).

[45] Varga L.K., Kováč J., Minor loop scaling rules for Finemet type soft magnetic cores, Acta Physica Polonica A, vol. 126, pp. 156-157 (2014).

Archives of Electrical Engineering

The Journal of Polish Academy of Sciences

Journal Information

CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.238
Source Normalized Impact per Paper (SNIP) 2016: 0.535


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 149 11
PDF Downloads 64 63 8