Impact of the sleeve thickness on the armature eccentricity in a solenoid valve

Open access


Most studies on solenoid valves (SVs) assumed that the armature is concentrically positioned in the sleeve. Under this assumption the transversal component of the magnetic force is equal zero. The article presents an analytical calculation model for the estimation of the armature eccentricity. Using this model the eccentricity was calculated as a function of the sleeve thickness and the hydraulic clearance between the armature and the sleeve. After finding the eccentricity also the permeance of the radial air gap was calculated. This permeance has a direct influence on the drop of the magnetomotive force in the magnetic circuit and finally influences also the axial component of the magnetic force. In the article a calculation of both transversal and axial components of the magnetic force was carried out and presented in the appendix to the article.

[1] Bottauscio O., Chiampi M., Manzin A., Different finite element approaches for electromechanical dynamics, IEEE Transactions on Magnetics 40(2): 541-544 (2004).

[2] Huber B., Ulbrich H., Modeling and experimental validation of the solenoid valve of a common rail diesel injector, SAE Technical Paper 2014-01-0195 (2014).

[3] Shahroudi K., Peterson D., Belt D., Indirect adaptive closed loop control of solenoid actuated gas and liquid injection valves, SAE Technical Paper 2006-01-0007 (2006).

[4] Lu F., Deng J., Hu Z., Impact of control methods on dynamic characteristic of high speed solenoid injectors, SAE Technical Paper 2014-01-1445 (2014).

[5] Angadi S. V., Jackson S., Choe S., Reliability and life study of hydraulic solenoid valve. Part 1: a multi-physics finite element model, Engineering Failure Analysis 16(3): 874-887 (2009).

[6] Peng L., Liyun F., Qaisar H., De X., Xiuzhen M., Enzhe S., Research on Key factors and their interaction effects of electromagnetic force of high-speed solenoid valve, The Scientific World Journal. Hindawi Publishing Corporation., Article ID 567242 (2014).

[7] Vogel R., Numerische Berechnung der Ankerreibung eines elektromagnetischen Schaltventils. Studienarbeit, Universität Dortmund, Dortmund (2006).

[8] Deland D. L., Solenoid arrangement with segmented armature member for reducing radial force, Davison, MI (US) Patent US 8,421,568 B2 (2013).

[9] Goraj R., Elektromagnetisches Schaltventil, Germany Patent DE 10 2007 023 363 A1 (2007).

[10] Kleist A., Berechnung von Dicht- und Lagerfugen in hydrostatischen Maschinen, Shaker Verlag, Aachen (2002).

[11] Kallenbach E., Elektromagnete-Grundlagen, Berechnung, Entwurf und Anwendung, Teubner Verlag/ GWV Fachverlage GmbH, Wiesbach (2003).

[12] Getzlaff M., Fundamentals of magnetism, Springer, Berlin, Heidelberg (2008).

[13] Küpfmüller K., Kohn G., Theoretische Elektrotechnik und Elektronik, Springer Berlin (1993).

[14] Stefanita C. G., Magnetism, basics and applications, Springer, Berlin, Heidelberg (2012).

[15] Rawa H., Electricity and magnetism in technology (in Polish), Wydawnictwo Naukowe PWN, Warszawa (2001).

[16] Booker J. F., A table of the journal-bearing integral, Journal of Basic Engineering 87(2): 533-535 (1965).

[17] Greenwood J., Williamson J., Contact of nominally flat surfaces, Proc. Royal Soc. London, 295(1442): 300-319 (1966).

Archives of Electrical Engineering

The Journal of Polish Academy of Sciences

Journal Information

CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.238
Source Normalized Impact per Paper (SNIP) 2016: 0.535

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 125 123 10
PDF Downloads 51 50 5