Operating point resolved loss computation in electrical machines

Open access


Magnetic circuits of electromagnetic energy converters, such as electrical machines, are nowadays highly utilized. This proposition is intrinsic for the magnetic as well as the electric circuit and depicts that significant enhancements of electrical machines are difficult to achieve in the absence of a detailed understanding of underlying effects. In order to improve the properties of electrical machines the accurate determination of the locally distributed iron losses based on idealized model assumptions solely is not sufficient. Other loss generating effects have to be considered and the possibility being able to distinguish between the causes of particular loss components is indispensable. Parasitic loss mechanisms additionally contributing to the total losses originating from field harmonics, non-linear material behaviour, rotational magnetizations, and detrimental effects caused by the manufacturing process or temperature, are not explicitly considered in the common iron-loss models, probably even not specifically contained in commonly used calibration factors. This paper presents a methodology being able to distinguish between different loss mechanisms and enables to individually consider particular loss mechanisms in the model of the electric machine. A sensitivity analysis of the model parameters can be performed to obtain information about which decisive loss origin for which working point has to be manipulated by the electromagnetic design or the control of the machine.

[1] Podoleanu I., Schneider J., Müller G., Hameyer K., Software tool for the optimum material choice for induction machines. Proc. Conf. OPTIM (2002).

[2] Bertotti G., Hysteresis in magnetism. Academic Press (1998).

[3] Steinmetz C., On the law of hysteresis (originally published in 1892). Proc. Conf. IEEE 72(2): 197-221 (1984).

[4] Zirka S.E., Moroz Y.I., Marketos P., Moses A.J., Loss Separation in Nonoriented Electrical Steels. IEEE Trans. Magn. 46(2) (2010).

[5] Jacobs S., Hectors D., Henrotte F. et al., Magnetic material optimization for hybrid vehicle PMSM drives. Proc. Conf. EVS24 (2009).

[6] Steentjes S., Leßmann M., Hameyer K., Advanced Iron-Loss Calculation as a Basis for Efficiency Improvement of Electrical Machines in Automotive Application. Proc. Conf. ESARS, pp. 1-6 (2012).

[7] Henrotte F., Schneider J., Hameyer K., Influence of the manufacturing process in the magnetic properties of iron cores in induction machines. Proc. Conf. WMM (2006).

[8] Steentjes S., Hameyer K., Bednarz M. et al., Influence of material processing steps annealing and cutting on magnetic materials' properties relevant for electrical machine design. Proc. Conf. FTF (2013).

[9] Steentjes S., von Pfingsten G., Hombitzer M., Hameyer K., Iron-loss model with consideration of minor loops applied to FE-simulations of electrical machines. IEEE Trans. on Magn. 49(7) (2013).

[10] Standard DIN EN 10106: Cold rolled non-oriented electrical steel sheet and strip delivered in the fully processed state. Beuth Verlag (2007).

[11] Standard DIN EN 10303: Thin magnetic steel sheet and strip for use at medium frequencies. Beuth Verlag (2001).

[12] Steinmetz C., On the law of hysteresis (originally published in 1892). Proc. IEEE 72(2): 197-221 (1984).

[13] Bertotti G., General Properties of Power Losses in Soft Ferromagnetic Materials. IEEE Trans. on Magn. 24(1): 621-630 (1988).

[14] Moses A.J., Energy efficient electrical steels: Magnetic performance prediction and optimization. Scripta Materialia 67: 560-565 (2012).

[15] Landgraf F.J.G., de Campos M.F., Leicht J., Hysteresis loss subdivision. Journal of Magnetism and Magnetic Materials 320: 2494-2498 (2008).

[16] Gyselinck J., Vandewelde L., Melkebeek J. et al., Calculation of Eddy Currents and Associated Losses in Electrical Steel Laminations. IEEE Trans. on Magn. 35(3): 1191-1194 (1999).

[17] De Wulf M., Dupré L., Melkebeek J., Quasistatic measurements for hysteresis modeling. Journ. Appl. Phy. 87(9): 5239-5241 (2000).

[18] Standard DIN IEC 60404-13: Magnetic materials - Part 13: Methods of measurement of resistivity, density and stacking factor of electrical steel strip and sheet. Beuth Verlag (2015).

[19] Standard DIN IEC 60404-2: Magnetic materials - Part 2: Methods of measurement of the magnetic properties of electrical steel strip and sheet by means of an Epstein frame. Beuth Verlag (2009).

[20] G. von Pfingsten, T. Herold, K. Hameyer, Kalibrierte Leistungssimulation von elektrischen Maschinen - eine Möglichkeit zur Bewertung von nicht vermessbaren Betriebsbereichen und des Einsatzes unterschiedlicher weichmagnetischer Materialien ohne weiteren Musterbau. Proc. Nat. Conf. VDE/VDI Antriebssysteme (2013).

[21] Bertotti G., Canove A., Chiampi M. et al., Core loss prediction combining physical models with numerical field analysis. Journ. .Magn. and Magn. Mat. 133: 647-650 (1994).

[22] Fiorillo F., Novikov A., An Improved Approach to Power Losses in Magnetic Laminations under Nonsinusoidal Induction. IEEE Trans. on Magn. 26(5): 1990.

[23] Fiorillo F., Novikov A., Power losses under sinusoidal, trapezoidal and distorted induction waveform. IEEE Trans. on Magn. 26(5): 2559-2561 (1990).

[24] Fiorillo F., Rietto A.M., Rotational versus alternating hysteresis losses in nonoriented soft magnetic laminations. Journ. Appl. Phy. 73: 6615-6617 (1993).

[25] De Doncker R., Pulle D., Veltman A., Advanced Electrical Drives: Analysis. Modelling, Control, Springer (2010).

[26] Baudouin P., Belhadj A., Breaban F. et al., Effects of laser and mechanical cutting modes on the magnetic properties of low and medium Si content non-oriented electrical steels. IEEE Trans. on Magn. 38(5): 3213-3215 (2002).

[27] Schmidt K.-H., Influence of punching on the magnetic properties of electric steel with 1% silicon. Journ. Magn. Magn. Mat. 2: 136-150 (1976).

[28] Schoppa A., Schneider J., Wuppermann C.D., Influence of the manufacturing process on the magnetic properties of non-oriented electrical steels. Journ. Magn. Magn. Mat. 215-216: 74-78 (2000).

[29] Moses A.J., Derebasi N., Loisos G., Schoppa A., Aspects of the cut-edge effect stress on the power loss and flux density distribution in electrical steel sheets. Journ. Magn. Magn. Mat. 215-216: 690-692 (2000).

[30] Vandenbossche L., Jacobs S., Henrotte F., Hameyer K., Impact of cut edges on magnetization curves and iron losses in e-machines for automotive traction. EVS-25 (2010).

Archives of Electrical Engineering

The Journal of Polish Academy of Sciences

Journal Information

CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.238
Source Normalized Impact per Paper (SNIP) 2016: 0.535


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 119 6
PDF Downloads 47 47 3