Small-signal transmittances of DC-DC step-down PWM converter in various operation modes

Open access

Abstract

Small-signal transmittances: input-to-output and control-to-output of BUCK converter power stage working in CCM or DCM mode are discussed. Ideal converter case and converter with parasitic resistances are considered separately. Derivations of small-signal transmittances, based on different approaches to finding the converter averaged models, are presented and the results are compared. Apart from theoretical considerations, some results of numerical calculations are presented.

[1] Erickson R.W., Maksimovic D., Fundamentals of Power Electronics. 2-nd Edition, Kluwer (2002).

[2] Kazimierczuk M.K., Pulse-Width Modulated DC–DC Power Converters. J. Wiley (2008).

[3] Basso P., Switch-Mode Power Supply Spice Cookbook. McGraw-Hill (2001).

[4] Maksimowic D., Stankovic A.M., Thottuvelil V.J., Verghese G.C., Modeling and Simulation of Power Electronic Converters. Proc. IEEE 89(6): 898-912 (2001).

[5] Maksimovic D., Erickson R.W., Advances in Averaged Switch Modeling and Simulation. Power Electronics Specialists Conference, Tutorial Notes (1999).

[6] Janke W., Averaged Models of Pulse-Modulated DC-DC Converters, Part I. Discussion of Standard Methods. Archives of Electrical Engineering 61(4): 609-631 (2012).

[7] Gomes E. de C., de S. Ribeiro L.A., Caracas J.V.M. et al., State Space Decoupling Approach for Feedback Controller Design of Switching Converters. IPEC_2010, pp. 2410-2414 (2010).

[8] Modabbernia M.R., An Improved State Space Average Model of Buck DC-DC Converter with all of the System Uncertainties. International Journal on Electrical Engineering and Informatics 5(1): 81-86 (2013).

[9] Vorperian V., Simplified Analysis of PWM Converters Using Model of PWM Switch. Part I: Continuous Conduction Mode. IEEE Trans. on Aerospace and Electronic Systems 26(3): 490-496 (1990).

[10] Biolek D., Biolkova V., Kolka Z., Averaged Modeling of Switched DC-DC Converters Based on SPICE Models of Semiconductor Switches. Proc. 7-th WSEAS Conf. Circuits, Systems, Electronics, Control and Signal Processing (CSECS’08), pp. 162-167 (2008).

[11] Dijk van E., Spruijt H., O’Sullivan D., Klaassens J., PWM-Switch Modeling of DC – DC Converters. IEEE Trans. on Power Electronics 10(6): 659-664 (1995).

[12] Vorperian V., Simplified Analysis of PWM Converters Using Model of PWM Switch. Part II: Discontinuous Conduction Mode. IEEE Trans. on Aerospace and Electronic Systems 26(3): 497-505 (1990).

[13] Janke W., Averaged Models of Pulse-Modulated DC-DC Converters, Part II. Models Based on the Separation of Variables. Archives of Electrical Engineering 61(4): 633-654 (2012).

[14] Janke W., Equivalent circuits for averaged description of DC-DC switch-mode power converters based on separation of variables approach. Bull. of the Polish Acad. of Sciences 61(3): 711-723 (2013).

[15] Janke W., Walczak M., Comparison of Transient States in Step-Down Power Converter (Buck) in Continuous and Discontinuous Conduction Mode. Bull. of the Polish Acad. of Sciences 62(4): 773-778 (2014).

[16] Niculescu E., Purcaru D., Niculescu M., Small-Signal Models of Some Basic PWM Converters. 12th WSEAS Intern. Conf. on Circuits, Heraklion, Greece, July 22-24, pp. 321-326 (2008).

[17] Janke W., Walczak M., Bączek M., Charakterystyki wejściowe i wyjściowe przetwornic napięcia BUCK i BOOST z uwzględnieniem rezystancji pasożytniczych. Przegląd Elektrotechniczny 88(12): 291-294 (2012).

[18] Janke W., Walczak M., Bączek M., Output Characteristics of Step-Down (Buck) Power Converter. Bull. of the Polish Acad. of Sciences 60(4): 751-756 (2012).

[19] Jinno M., Chen P.J., Lai Y.C., Harada K., Investigation on the Ripple Voltage and the Stability of SR Buck Converters With High Output Current and Low Output Voltage. IEEE Transactions on Industrial Electronics 57(3): 1008-1013 (2010).

[20] Jodar E., Villarejo J.A., Soto V., Muro J.S., Effect of the Output Impedance in Multiphase Active Clamp Buck Converters. IEEE Transactions on Power Electronics 55(9): 3231-3235 (2008).

[21] Ahn Y., Heo D., Nam H., Roh J., An Inductor-type Current-Mode Buck Converter For Mobile Applications. The 23rd International Technical Conference on Circuits/Systems, Computers and Communications, pp. 985-989 (2008).

[22] Kovacewic M., Comparison of Discrete Models of DC-DC Converters. 16th Telecommunications Forum TELFOR, pp. 929-934 (2008).

[23] Tajuddin M.F.N., Rahim N.A., Small-signal AC modeling Technique of Buck Converter with DSP Based Proportional-Integral-Derivative (PID) Controller. IEEE Symposium on Industrial Electronics and Applications, Kuala Lumpur, Malaysia, Oct. 4-6 (2009).

[24] Geethanjali P., Vijaya P., Kowsalya M., Raju J., Design and Simulation of Digital PID Controller for Open Loop and Closed Loop Control of Buck Converter. International Journal of Computer Science and Technology, pp. 202-208 (2010).

[25] Al-Rabadi A.N., Barghash M.A., Abuzeid O.M., Fuzzy Regulation for the Intelligent Control of Switching-Mode Buck Power-Electronic Converter Using Genetic Algorithm-Based Tuning. Proceedings of the International Multi-Conference of Engineers and Computer Scientists II, IMECS 2012, March 14-16, Hong Kong (2012).

[26] Bryant B., Kazimierczuk M.K., Modeling the Closed-Current Loop of PWM Boost DC-DC Converters Operating in CCM With Peak Current-Mode Control. IEEE Transactions on Circuits and Systems 52(11), (2005).

[27] Davoudi A., Jatskevich J. Chapman, Simple method of including conduction losses for average modeling of switched-inductor cells. Electronics Letters 12th October, 42(21), (2006).

[28] Choudhury S., Designing a TMS320F280x Based Digitally Controlled DC-DC Switching Power Supply. Texas Instruments, Appl. Report SPRAAB3, July (2005).

[29] Zaitsu R., Voltage Mode Boost Converter Small Signal Control Loop Analysis Using the TPS61030. Texas Instruments, Appl. Report SLVA274A (2009).

[30] Zhuo G., Xu J., Jin Y., Improved digital peak current predictive control for switching DC-DC converters. IET Power Electron 4(2): 227-234 (2011).

[31] Gragger J.V., Haumer A., Einhorn M., Averaged Model of a Buck Converter for Efficiency Analysis. Engineering Letters 18(1), (2010).

[32] Zhuo G., Xu J., Digital Average Current Controlled Switching DC-DC Converters With Signal-Edge Modulation. IEEE Transactions on Power Electronics 25(3): 786-791 (2010).

[33] Priyanka P.S.K., Palli S.M.S., Modeling, Design & Stability Analysis of Power Converter, IJEAR, 4 (1): 85-91 (2014).

[34] Yan Y., Lee F.C., Mattaveli P., Liu P.H., I2 Average Current Mode Control for Switching Converters. IEEE Transactions on Industrial Electronics 29(4): 2021-2024 (2014).

[35] Lappaaho J., Karppanen M., Suntio T., Current-Sourced Buck Converter, Nordic Workshop on Power and Industrial Electronic June 9-11 (2008).

[36] Czarkowski D., Kazimierczuk M.K., Energy-Conservation Approach to Modeling PWM DC – DC Converters. IEEE Trans. on Aerospace and Electronic Systems 29(3): 1059-1063 (1993).

[37] Kazimierczuk M.K., Czarkowski D., Application of the Principle of Energy Conservation to Modeling the PWM Converter. 2-nd IEEE Conf. on Control Applications 291-296 (1993).

[38] Sun J., Mitchell D., Greuel M. et al., Averaged modeling of PWM Converters Operating in Discontinuous Conduction Mode. IEEE Trans. on Power Electronics 16(4): 482-492 (2001).

[39] Mirela C. et al., A New Averaged Switch Model Including Conduction Losses for PWM Converters Operating in Discontinuous Inductor Mode. Fact a Universitatis (NIŠ), Electr. Energ. 19(2): 219-230 (2006).

[40] Qiu Y., Chen X., Liu H., Digital average current-mode control using current estimation and capacitor charge balance principle for DC-DC converters operating in DCM. IEEE Trans. on Power Electronics 25 (6): 1537-1545 (2010).

[41] Fang C.C., Unified discrete-time modeling of buck converter in discontinuous mode. IEEE Trans. on Power Electronics 26: 2335-2342 (2011).

[42] Xu J., Wang J., Bifrequency Pulse-Train Control Technique for Switching DC-DC Converters Operating in DCM. IEEE Trans. on Industrial Electronics 58(8): 3658-3667 (2011).

[43] Gong S., Chen L., Yu C., Xie G., Modeling and Simulation of Non-Ideal Buck Converter in DCM. Intern. Journal of Computer Technology and Electronics Engineering 2(2): 72-75 (2012).

Archives of Electrical Engineering

The Journal of Polish Academy of Sciences

Journal Information


CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.238
Source Normalized Impact per Paper (SNIP) 2016: 0.535

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 147 21
PDF Downloads 45 45 5