The applications of fixed-point theorem in optimisation problems

Open access

The applications of fixed-point theorem in optimisation problems

The fixed-point theorem is widely used in different engineering applications. The present paper focuses on its applications in optimisation. A Matlab toolbox, which implements the branch-and-bound optimisation method based on the fixed-point theorem, is used for solving different real-life test problems, including estimation of model parameters for the Jiles-Atherton model.

Björkmann M., Holmström K., Global optimization using the DIRECT algorithm in Matlab. Technical report IMa-TOM-1998-12, Mälardalen University, Västeras, Sweden (1999).

Bronsztejn I. N., Siemiendiajew K. A., Musiol G., Mühlig H., Nowoczesne kompendium matematyki. (Taschenbuch der Mathematik - auf Polnisch), PWN Warszawa (2007).

Chiampi M., Chiarabaglio D., Repetto, M., A Jiles-Atherton and Fixed-Point combined technique for time periodic magnetic field problems with hysteresis. IEEE Transactions on Magnetics 31(6): 4306-4311 (1995).

Chwastek K., Szczygłowski J., An alternative method to estimate the parameters of Jiles-Atherton model. Journal of Magnetism and Magnetic Materials 314: 47-51 (2007).

Chwastek K., Szczygłowski J., Estimation methods for the Jiles-Atherton model parameters - a review. Przegląd Elektrotechniczny (Electrotechnical Review) 12: 145-8 (2008).

Chwastek K., Modelling of dynamic hysteresis loops using the Jiles-Atherton approach. Mathematical and Computer Modelling of Dynamical Systems 15(1): 95-105 (2009).

Dixon L. C. W., Szégö G. P. (Eds.), Towards Global Optimisation. vol. 2, North-Holland Publishing Company (1978).

Finkel D. E., Global optimization with the DIRECT algorithm. PhD Thesis, North Carolina State University, Raleigh (2005).

Floudas C. A., Pardalos P. M., A collection of test problems for constrained global optimization algorithms. Lecture Notes in Computer Science 455, Springer-Verlag (1990).

Hănţilă I. F., A method for solving stationary magnetic field in nonlinear media. Revue Roumaine des Sciences Techniques-Électrotechnique et Énergétique 20(3): 397-407 (1975).

Horst R., Pardalos, P. M. (Eds.), Handbook of global optimization. Kluwer (1995).

Jagieła M., Calculation of core loss using the Jiles-Atherton model incorporated into magnetic field analysis. Archives of Electrical Engineering 56(1): 57-69 (2007).

Jędryczka C., Sujka P., Szeląg W., The influence of magnetic hysteresis on magnetorheological fluid clutch operation. COMPEL 28(3): 711-721 (2009).

Jiles D. C., Atherton, D. L., Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials 61(1): 48-60 (1986).

Jiles D. C., Thoelke J. B., Devine M. K., Numerical determination of hysteresis model parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis. IEEE Transactions on Magnetics 28(1): 27-35 (1992).

Jones D. R., Perttunen C. D., Stuckman B. E., Lipschitzian optimization without the Lipschitz constant. Journal of Optimization Theory and Applications 79 (1): 157-81 (1993).

Knypiński Ł., Optimization and field-circuit simulation of permanent magnet brushless DC motor. Conference Archives PTETiS 29: 451-456 (2011).

Kudrewicz J., Dynamika pętli fazowej. (Dynamics of phase locked loop - in Polish), WNT Warszawa (1991).

Łyskawiński W., Sujka P., Szeląg W., Barański, M., Numerical analysis of hysteresis loss in pulse transformer. Archives of Electrical Engineering 60(2): 187-192 (2011).

Muszyński J., Myszkis A. D., Równania różniczkowe zwyczajne. (Ordinary differential equations - in Polish), PWN Warszawa (1984).

Neumaier A., Complete search in continuous global optimisation and constraint satisfaction. [In:] Acta Numerica 2004 (A. Iserles, Ed.), Cambridge University Press (2004). See also:

Peitgen H.-O., Jürgens H., Saupe, D., Granice chaosu. Fraktale. cz. 1 (Polish translation of Chaos and fractals. New frontiers of science.), PWN Warszawa (1995).

Pintér J., Nonlinear optimization with GAMS / LGO. Journal of Global Optimization 38: 79-101 (2007). See also:

Sadowski N., Batistela N. J., Bastos J. P. A., Lajoie-Mazenc M., An inverse Jiles-Atherton model to take into account hysteresis in time-stepping finite-element calculations. IEEE Transactions on Magnetism 38(2): 797-800 (2002).

Archives of Electrical Engineering

The Journal of Polish Academy of Sciences

Journal Information

CiteScore 2016: 0.71

SCImago Journal Rank (SJR) 2016: 0.238
Source Normalized Impact per Paper (SNIP) 2016: 0.535

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 398 398 44
PDF Downloads 250 250 49