Polycarbonate/Polypropylene-Graft-Maleic Anhydride and Nano-Zeolite-Based Nanocomposite Membrane: Mechanical and Gas Separation Performance

Open access

Abstract

In this effort, blend membrane of polycarbonate (PC) and polypropylene-graft-maleic anhydride (PPMA) was fabricated via phase inversion technique. The nano-zeolite (NZ) was employed as nanofiller. Morphology of PC/PPMA/NZ membrane revealed unique inter-connected branched microstructure. Tensile strength and Young’s Modulus of PC/PPMA/NZ 0.1-5 were in the range of 59.9-74.5 MPa and 111.4-155.2 MPa respectively. The nano-zeolite filler was also effective in enhancing the permselectivity αCO2/N2 (23.5 to 38.5) relative to blend membrane (20.3). The permeability PCO2 of PC/PPMA/NZ 5 membrane was found as 106.2 Barrer. Filler loading enhanced gas diffusivity, however filler content did not significantly influence CO2 and N2 solubility.

1. Kausar A., Ullah W., Muhammad B., Siddiq, M.: Novel mechanically stable, heat resistant and nonflammable functionalized polystyrene/expanded graphite nanocomposites, Adv. Mater. Sci. 14 (2014) 61-74.

2. Kausar A.: Effect of nanofiller dispersion on morphology, mechanical and conducting properties of electroactive shape memory Poly (urethane-urea)/functional nanodiamond composite, Adv. Mater. Sci. 15 (2015) 14-28.

3. Budzik M., Pilawka R., Imielińska K., Jumel J., Shanahan M.: Fracture of Aluminium Joints Bonded with Epoxy Adhesive Reinforced by MMT Nanoparticles. Adv. Mater. Sci. 9 (2009) 4-11.

4. Seramak T., Serbiński W., Zieliński, A.: Porous biomaterial for orthopaedic implants based on titanium alloy, Adv. Mater. Sci. 11(2011) 27-34.

5. El-Sabbagh S.H., Mahmoud D.S., Zawrah M. F., Ahmed N. M., Sabaa M.W.: Investigation on the properties of rubber composites containing modified clay, Pigment. Resin. Technol. 44 (2015) 131-142.

6. Liu Y., Zhu X., Wang S., Zhao M.: Surface imprinted superparamagnetic nanoparticles for rapid and efficient extraction of bisphenol A form water samples, J. Chin. Adv. Mater. Soc. 1 (2013) 166-176.

7. Patel R., Kim S. J., Roh D. K., Kim. J. H: Synthesis of amphiphilic PCZ-r-PEG nanostructural copolymers and their use in CO2/N2 separation membranes, Chem. Eng. J. 254 (2014) 46-53.

8. Bushell A.F., Attfield M.P., Mason C.R., Budd P.M., Yampolskii Y., Starannikova L., Rebrov A., Bazzarelli F., Bernardo P., Jansen J.C., Lanč, M.: Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. membran. sci. 427 (2013) 48-62.

9. Muntha S. T., Kausar A., Siddiq. M.: A Review on Zeolite Reinforced Polymeric Membranes: Salient Features and Applications, Polym. Plast. Technol. Engineer. (2016) DOI:10.1080/03602559.2016.1185631.

10. Rutkowska M., Chmielarz L., Macina D., Dudek B., Van Oers C., Cool P.: Hierarchical materials originated from mesoporous MCF material and Beta zeolite nanoparticles-synthesis and catalytic activity in N2O decomposition, J. Chin. Adv. Mater. Soc. 1 (2013) 48-55.

11. Yao J., Wang H.: Zeolitic imidazolate framework composite membranes and thin films: synthesis and applications, Chem. Soc. Rev. 43 (2014) 4470-4493.

12. Ghosh A. K., Hoek E. M., Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes, J. Membr. Sci. 336 (2009) 140-148.

13. Kim M., Lee S.: Characteristics of porous polycarbonate membrane with polyethylene glycol in supercritical CO2 and effect of its porosity on tearing stress, J. Supercrit. Fluids. 31 (2004) 217-225.

14. Li Y., He G., Wang S., Yu S., Pan F., Wu, H., Jiang, Z.: Recent advances in the fabrication of advanced composite membranes, J. Mater. Chem. A. 1 (2013) 10058-10077.

15. Kim S., Lee Y.M.: Rigid and microporous polymers for gas separation membranes, Prog. Polym. Sci. 43 (2015) 1-32.

16. Sanders D.F., Smith Z.P., Guo R., Robeson L.M., McGrath J.E., Paul D.R., Freeman B.D.: Energy-efficient polymeric gas separation membranes for a sustainable future: a review, Polymer. 54 (2013) 4729-4761.

17. Ali W., Kausar A., Iqbal T.: Reinforcement of high performance polystyrene/polyamide/polythiophene with multi-walled carbon nanotube obtained through various routes, Compos. Interfac. 22 (2015) 885-897.

18. Mehwish N. Kausar A., Siddiq M.: Polyvinylidenefluoride/Poly(styrene-butadiene-styrene)/Silver Nanoparticle-Grafted-Acid Chloride Functional MWCNTs-Based Nanocomposites: Preparation and Properties, Polym. Plast. Technol. Engineer. 54 (2015) 474-483.

19. Kim J., Son Y.: Effects of matrix viscosity, mixing method and annealing on the electrical conductivity of injection molded polycarbonate/MWCNT nanocomposites, Polymer. 88 (2016) 29-35.

20. Tian Z., Dai S., Jiang D.E.: Expanded porphyrins as two-dimensional porous membranes for CO2 separation, A.C.S. Appl. Mater. Interface. 7 (2015) 13073-13079.

21. Kausar A.: Proton exchange fuel cell membranes of poly(benzimidazole-amide)/sulfonated polystyrene/titania nanoparticles-grafted-multi-walled carbon nanotubes, J. Plast. Film. Sheet. (2014) 8756087914526879.

22. Yampolskii Y.: Polymeric gas separation membranes, Macromolecules. 45 (2012) 3298-3311.

23. Aroon M.A., Ismail A.F., Matsuura T., Montazer-Rahmati M.M.: Performance studies of mixed matrix membranes for gas separation: a review, Separat. Purificat. Technol. 75 (2010) 229-242.

24. Süer M.G., Baç N., Yilmaz, L.: Gas permeation characteristics of polymer-zeolite mixed matrix membranes. J. Membran. Sci. 91 (1994) 77-86.

25. Koros W.J., Chan A. H., Paul D. R.: Sorption and transport of various gases in polycarbonate, J. Membran. Sci. 21 (977) 165-190.

26. Charkhi A., Kazemian H., Kazemeini M.: Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders, Powder. Technol. 203 (2010) 389-396.

27. Pinnau I., Koros W. J.: Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion, J. Appl. Polym. Sci. 43 (1991) 1491-1502.

28. Fathizadeh M., Aroujalian A., Raisi A.: Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process, J. Membran. Sci. 375 (2011) 88-95.

29. O’Brien-Abraham J., Kanezashi M., Lin Y.S.: A comparative study on permeation and mechanical properties of random and oriented MFI-type zeolite membranes, Micropor. Mesopor. Mater. 105 (2007) 140-148.

30. Jia M. D., Pleinemann K. V., Behling R. D.: Preparation and characterization of thin-film zeolite–PDMS composite membranes, J. Membran. Sci. 73 (1992) 119-128.

31. Vu D.Q., Koros W.J., Miller S.J.: Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results, J. Membran. Sci. 211 (2003) 311-334.

32. Merkel T. C., Freeman B. D., Spontak R. J., He Z., Pinnau I., Meakin P., Hill A. J.: Sorption, transport, and structural evidence for enhanced free volume in poly (4-methyl-2-pentyne)/fumed silica nanocomposite membranes, Chem. Mater. 15 (2003) 109-123.

33. Ahn J., Chung W.J., Pinnau I., Guiver M.D.: Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membran. Sci. 314 (2008) 123-133.

34. Bakker, W.J., Kapteijn, F., Poppe, J. and Moulijn, J.A., 1996. Permeation characteristics of a metal-supported silicalite-1 zeolite membrane. J. Membran. Sci. 117 (1996) 57-78.

35. Barrer, R.M. Porous crystal membranes. J. Chem. Soc. Faraday Trans. 86 (1990) 1123-1130.

Advances in Materials Science

The Journal of Gdansk University of Technology

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 159 12
PDF Downloads 96 74 4