INFLUENCE OF PORE FORMERS ON ELECTRICAL PROPERTIES OF CaTi0.9Fe0.1O3-δ PEROVSKITE-TYPE CERAMICS

Open access

INFLUENCE OF PORE FORMERS ON ELECTRICAL PROPERTIES OF CaTi0.9Fe0.1O3-δ PEROVSKITE-TYPE CERAMICS

Porous CaTi0.9Fe0.1O3-δ (CTF) perovskites were synthesized by the standard solid state method at different sintering temperatures with carbon black (CB), corn starch (CS) and potato starch (PS) as pore-forming agents. The ceramic samples of porosity between 9% and 42% with 5 - 40 μm pore sizes, were obtained by a 6 h sintering at either 1130° C or 1200° C of precursor powder prepared at 1470° C. X-ray diffraction analysis proved the existence of orthorhombic single-phase perovskites crystalline structure. Electrical conductivity at 800° C was between 1.42×10-2 S cm-1 and 1.86×10-3 Scm-1. The conductivity markedly depended on the sample porosity. It should be noted that 30% of porosity, resulted in reduction of conductivity by less than one order of magnitude. Activation energy of conductivity varied between 0.41 and 0.56 eV. Cornstarch has been chosen as the most suitable pore-forming agent for obtaining the cathode of good properties. The best amount of the cornstarch has been proposed as between 5 and 10%.

Pasierb P., Drożdż-Cieśla E., Rekas M.: Properties of BaCe1-xTixO3 materials for hydrogen electrochemical separators, Journal of Power Sources 181 (2008), pp. 17-23.

Zhu J., Zäch M.: Nanostructured materials for photocatalytic hydrogen production, Current Opinion in Colloid & Interface Science 14 (2009), pp. 260-269.

Sahraoui M., Kharrat C., Halouani K., Two-dimensional modeling of electrochemical and transport phenomena in the porous structures of a PEMFC, International Journal of Hydrogen Energy 34 (2009), pp. 3091-3103.

Cindrella, L., Kannan, A. M., Lin, J. F., Saminathan, K., Ho, Y., Lin, C. W., Wertz, J.: Gas diffusion layer for proton exchange membrane fuel cells-A review, Journal of Power Sources 194 (2009), pp. 146-160.

Quarez E., Noirault S., Le Gal La Salle A., Stevens P., Joubert O., Evaluation of Ba2(In0.8Ti0.2)2O5.2-n(OH)2n as a potential electrolyte material for proton-conducting solid oxide fuel cell, Journal of Power Sources 195 (2010), pp. 4923-4927.

Bi L., Zhang S., Fang S., Tao Z., Peng R., Liu W.: A novel anode supported BaCe0.7Ta0.1Y0.2O3-δ electrolyte membrane for proton-conducting solid oxide fuel cell, Electrochemistry Communications 10 (2008), pp. 1598-601.

Zhao L., He B., Ling Y., Xun Z., Peng R., Meng G., Liu X.: Cobalt-free oxide Ba0.5Sr0.5Fe0.8Cu0.2O3Ld for proton-conducting solid oxide fuel cell cathode, International journal of hydrogen energy 35 (2010), pp. 3769 - 3774.

Fu X.-Z, Luo J.-L., Sanger A. R., Xu Z.-R., Chuang K. T.: Fabrication of bi-layered proton conducting membrane for hydrocarbon solid oxide fuel cell reactors, Electrochimica Acta 55 (2010), pp. 1145-1149.

Matsumoto H., Nomura I., Okada S., Ishihara T.: Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate, Solid State Ionics 179 (2008), pp. 1486-1489.

D'Epifanio A., Fabbri E., Di Bartolomeo E., Licoccia S., Traversa E.: Design of BaZr0.8Y0.2O3-δ Protonic Conductor to Improve the Electrochemical Performance in Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Fuel Cells 08 (2008), pp. 69-76.

Wu T., Peng R., Xia C.: Sm0.5Sr0.5CoO3-δ-BaCe0.8Sm0.2O3-δ composite cathodes for proton-conducting solid oxide fuel cells, Solid State Ionics 179 (2008), pp. 1505-1508.

Fontaine M.-L., Larring Y., Haugsrud R., Norby T., Wiik K., Bredesen R.: Novel high temperature proton conducting fuel cells: Production of La0.995Sr0.005NbO4-δ electrolyte thin films and compatible cathode architectures, Journal of Power Sources 188 (2009), pp. 106-113.

Yang L., Liu Z., Wang S., Choi Y., Zuo C., Liu M.: A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors, Journal of Power Sources 195 (2010), pp. 471-474.

Fontaine M. L., Larring Y., Smith J. B., Raeder H., Andersen Ø. S., Einarsrud M.-A., Wiik K., Bredesen R.: Shaping of advanced asymmetric structures of proton conducting ceramic materials for SOFC and membrane-based process applications, Journal of the European Ceramic Society 29 (2009), pp. 931-935.

Figueiredo F. M., Kharton V. V., Waerenborgh J. C., Viskup A. P., Naumovich E. N., Frade J. R.: Influence of Microstructure on the Electrical Properties of Iron-Substituted Calcium Titanate Ceramics, Journal of American Ceramic Society 87 (2004), pp. 2252-2261.

Ahmed M. A., Bishay S. T.: Effect of annealing time, weight pressure and Fe doping on the electrical and magnetic behavior of calcium titanate, Materials Chemistry and Physics 114 (2009), pp. 446-450.

Shaula A. L., Fuentes R. O., Figueiredo F. M., Kharton V. V., Marques F. M. B., Frade J. R: Grain size effects on oxygen permeation in submicrometric CaTi0.8Fe0.2O3-δ ceramics obtained by mechanical activation, Journal of the European Ceramic Society 25 (2005), pp. 2613-2616.

Figueiredo F. M., Waerenborgh J. C., Kharton V. V., Nafe H., Frade J. R.: On the relationships between structure, oxygen stoichiometry and ionic conductivity of CaTi1-xFexO3-δ (x = 0.05, 0.20, 0.40, 0.60), Solid State Ionics 156 (2003), pp. 371-381.

Kharton V. V., Figueiredo F. M., Kovalevsky A. V., Viskup A. P., Naumovich E. N., Jurado J. R., Frade J. R.: The Oxygen Diffusion in, and Thermal Expansion of, SrTiO33-δ - and CaTiO3-δ-Based Materials, Defect Diffusion Forum 186/187 (2000), pp. 119-136.

The X'PERT PLUS Rietveld algorithm is based on the source codes of the program LHPM1 (April 11, 1988) of R. J. Hill and C. J. Howard, X'Pert Plus, © 1999 Philips Electronics N. V.

Liu, X Liebermann, R C, PCMIDU 20 (1993), 171.

Advances in Materials Science

The Journal of Gdansk University of Technology

Journal Information

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 91 91 6
PDF Downloads 40 40 5