
Applied Computer Systems

71

ISSN 2255-8691 (online)

ISSN 2255-8683 (print)
May 2017, vol. 21, pp. 71–79

doi: 10.1515/acss-2017-0010

https://www.degruyter.com/view/j/acss

©2017 Jai Vigneshwar Alavandhar, Oksana Ņikiforova.

This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Several Ideas on Integration of SCRUM Practices

within Microsoft Solutions Framework

Jai Vigneshwar Alavandhar
1
,

Oksana Ņikiforova

2

1
KPMG Crimsonwing Ltd, Malta,

2
Riga Technical University, Latvia

Abstract – In order to develop and deliver a software project

successfully, any software development organisation has to follow

a well-known and recognised software engineering process for

successful delivery and maintenance of the software. However,

when the organisation is willing to follow a new software

development process, the success rate of adopting a new software

engineering process is a question mark. In the paper, we aim at

studying and comparing two software engineering processes,

which are based on different paradigms or models, and proposing

a hybrid methodology, which integrates advantages of both

compared methods. They are Microsoft Solutions Framework as

a representative for an iterative methodology and SCRUM for

agile software development. The comparative analysis will help a

software development company to make the transition easier

from Microsoft Solutions Framework to SCRUM or vice versa.

Keywords – Agile software development, iterative software

development, Microsoft Solutions Framework, SCRUM, software

engineering.

I. INTRODUCTION

In order to develop software, we need to follow some

methodology for successful delivery of the software system.

There are various software development models available, but

choosing the “right” model is a very complicated task. Under

each model or methodology, there are various frameworks

available. Choosing the model of software development

process and the underlying framework depends on customer

requirements, budget, time and other factors.

Moreover, the issue of choosing the model of software

development process becomes even more complicated, when

software developers have a long-term experience in using such

software project organisation and need to move to some other

paradigm of software development based on customer needs or

other conditions.

For example, one of the most popular software development

methods, which define a strong set of activities to perform,

artefacts to develop and role to share responsibilities, is

Microsoft Solutions Framework (MSF) [1]. It is a strongly

disciplined and well-defined model for software development,

with planning and requirements definition. Another style of

development is agile software development, where one of the

most known and used methodologies is SCRUM [2]. When a

software development company or a customer of the software

company is willing to adopt SCRUM over MSF or vice versa

as their software development model, then transformation to

their software practices and principles requires an in-depth

understanding and comparison between various processes and

sub-processes that will allow for fast and steady transition

from one software development model to another or a hybrid

of SCRUM and MSF, which will probably bring the best of

both models.

To make comparison between MSF and SCRUM, it is

necessary to understand a software engineering process and its

key points. Within the framework of the research, both

software engineering processes will be compared by their

principles, procedures, processes and best practices, as well as

phases, segmentations and work responsibility classifications.

Finally, the similarities and differences between MSF and

SCRUM will also be examined. Based on the information

collected, this comparative analysis can provide general

recommendations and serve as a guide for recognising project

situations for which these software engineering processes are

appropriate and can be integrated within another one.

II. BACKGROUND AND RELATED WORK

Software system development process has core activities,

such as Requirements Gathering, Design, Development,

Testing, Deployment and Maintenance [3]. There are various

software development models, for example, waterfall [4],

prototyping [5], incremental [6], V-model [7], spiral [8] and

agile [9], which are used to develop software systems. Each of

these models includes the core activities stated above, but may

or may not have additional activities and the order of the

activities may sometimes vary depending on the model.

Choosing the corresponding model for developing a software

system is a very complicated task [10]. Software companies,

based on their customer requirements and the project itself,

will select the type of software development model that suits

their application. In each period, different software

development models were popular, for example, the traditional

waterfall model was used as a model for most software and

system development projects. However, it failed in some cases

where requirements were changing or the requirements were

misunderstood and then there were other software

development models introduced to overcome such situations.

With the waterfall model, testing starts after development is

completed, so the cost of fixing defects is too high and risky.

The incremental, iterative, spiral models are based on the

requirement of customer and need for the product [10]. V-

model is also popular in the industry because the development

and testing will look like running in parallel so that it will

minimise some risks and defects known before delivery.

At present, the agile methodology is popular and commonly

used due to the reason that software systems are delivered as

Applied Computer Systems

__ 2017/21

72

parts and the priority is given to the most wanted functionality

or future so the customer can go live within a short period of

time. Thus, in the current fast growing software industry the

customers cannot wait for long time as in traditional

development and the Agile way of developing software helps

the customer to go live soon and helps the software

development company to bring more value to the customer.

There are many agile software development frameworks such

as SCRUM, Extreme Programming [11], Rapid Application

Development (RAD) [12] etc., which are meant for their own

features and benefits. In sequential process (Fig. 1), the core

requirement to start developing the software system is the list

of system requirements. The waterfall model is a kind of

sequential process. Based on the system requirements, the

software system will be built step by step. Each step is a phase

and there is no option to look back to the previous phase after

entering the other phase. This process will be carried out

sequentially to deliver the whole software product.

Fig. 1. Sequential development process.

In the sequential development process, there is no option to

go back to the previous phase. Due to this reason, the rest of

the phases in this process will be executed until the end

without looking back and progress with assumptions that

everything is going in right track. However, in the end the

software solution group did not meet customer requirements

and the solution failed. This is because one cannot identify all

the requirements at the beginning stage and freeze it to move

to next phase. For a complex system, it is not possible to

understand the requirements fully so there will be some

assumptions that the requirements are not in detail. Therefore,

it is important to analyse the requirements in detail. Some

requirements will be clear only after some progress is done and

maybe in future requirements will also change because the

needs will change. The problem with the sequential

development process is that the customer will see the software

system only at the end of the process or the implementation

and so due to this reason the customer cannot correct anything

in-between and the customer may go unsatisfied if the system

does not satisfy real requirements. It is like launching a rocket,

you have only one opportunity to perform the process of

launching and once it is launched then you cannot correct your

mistakes made and once the path is deviated it is completely

deviated and you cannot improve anything other than starting

the process from the beginning.

The iterative software development process (Fig. 2) will

start with the basic set of requirements and complete the

process, which is called on as one iteration finishes results in

producing version 1 of the software product. During the first

iteration, the requirements are understood well and with the

next set of requirements the 2nd version of software

development process will happen. The software system is

developed part by part; thus, each part is developed in one

iteration. In other words, this iterative process will bring

enhancements on each build released, so the software system

will go more matured after every iteration. At every iteration

any modifications required can be included along with a new

set of requirements. The iterative model can only be used

under certain scenarios. The requirements of the system need

to be complete and understood, in case there are chances that

new technologies are introduced and resources with definite

skills are available for only a short period of time and mainly

there are high risks and the goal changes in future. However,

there are also some disadvantages with the iterative process

model. It is not suitable for projects of small size and the

management involvement is required most of the time, which

also creates more complexity. Moreover, highly skilled

resources are required and also many resources are needed.

There are also more project risks and the project is dependent

of the analysis of risks.

Fig. 2. Iterative development process.

Agile Development (Fig. 3) uses an iterative and flexible

approach to software development. The software is developed

in an incremental cycle, which results in small incremental

releases. Usually the agile process is preferred in time critical

projects. In agile model, each iteration is considered sprint,

which has a planning stage, development, testing, and

deployment and finally sprint demo. In the planning stage, the

backlog item or user stories or bugs are gathered and planned

according to the time period of sprint. After planning, the

development stage starts and then testing will follow. After

tests are passed, the items are deployed and presented to the

customer as a working feature. Agile addresses the emergent

nature of developing software, accounting for the fact that

requirements change and become known during development.

Applied Computer Systems

__ 2017/21

73

Fig. 3. Agile development process.

Software applications developed through the agile process

have three times the success rate of the traditional waterfall

method and a much lower percentage of time and cost

overruns (Fig. 4):

 Project initiatives that are rigid run the greatest risk of

dissolution. Yet, having a flexible, formal process has been

proven to greatly improve the success rate.

 Steppingstones are a key driver for the success of the agile

and iterative software development process.

 Quickness and velocity are vital to an agile process, and

that encompasses feedback. However, a major advantage of

the agile process is the closeness of the executive sponsor or,

in agile terms, the owner.

Fig. 4. Agile today – in the mainstream [13].

Both the Forrester (Fig. 5) and VersionOne (Fig. 6) surveys

strongly indicate that SCRUM was the most common agile

development method employed in 2010.

Fig. 5. Forrester Q2 2010 [14].

Fig. 6. VersionOne 2010 Survey [15].

The paper compares the software engineering processes

called Microsoft Solutions Framework of iterative metho-

dology and SCRUM of agile methodology based on their

characteristics, foundation principles, processes, disciplines

and the study of their merits and demerits, proposing a hybrid

software development model for Agile software development.

III. COMPARISON OF MSF AND SCRUM

Managing the development of software products in real

environment is much more complex than the theoretical line as

in theory we cannot predict all problems that may arise in

practice; however, often the methodology in real application is

viewed as framework.

On the other hand, the questions on historical development

methodologies usually emphasise that the old methodology is

inadequate and the new methodology has corrected the

shortcomings of previous ones and brought new and advanced

ideas. However, it should be noted that most of today’s

operating systems, solutions for word processing, all serious

RDBMS systems, most Mail servers, and all major ERP

systems and so on are created using the old methodologies. It

should be borne in mind that today, with agile methodologies,

there is very little new software developed, and most

applications undergo the development stage, when more and

more serious systems are concerned. Some of them are

working on new versions for improvement and enhancement,

minor finishing and some refactoring in the existing systems

that have been developed through older methodologies.

The question is whether the new methodology exactly is

much better the traditional methodologies and which are the

characteristics that distinguish it compared to the traditional

ones. In theory, agile methodologies usually allocate several

key areas, such as:

- Management team;

- Changes required by the client;

- Product quality;

- Definition of architecture;

- Documentation;

- Return on investment.

According to these key areas, Tables I–IV give a

comparison of the practical vision of two methodologies,

SCRUM and Microsoft Solutions Framework.

Applied Computer Systems

__ 2017/21

74

TABLE I

COMPARISON OF MICROSOFT SOLUTIONS FRAMEWORK TO SCRUM BY KEY AREAS

Microsoft Solutions Framework SCRUM

Basic principles

Microsoft Solutions Framework is a combination of waterfall
and spiral models.

SCRUM uses an iterative and incremental development process.

MSF is formed after analysing the key characteristics of

successful projects, which were then incorporated to the MSF

framework.

SCRUM is an agile methodology for software development that is ideal for projects

with rapid changes or with very urgent requirements.

Iteration is the basic unit of development in Microsoft Solutions

Framework.

Sprint is the basic unit of development in SCRUM. With the progress of SCRUM, a

project is going through a series of iterations called “sprint”. SCRUM is sometimes

said to be a thin framework [16] rather than a strict methodology.

The duration of an iteration with MSF is between 30 and 90 days
and in between changes are not permitted.

The maximum duration of sprint at SCRUM is 30 days and in between changes are
not permitted.

Management

According to MSF, complete team is managed by program

management, which often has a dual role, Project Manager and

Solutions Architect. This role is responsible for planning,
implementation and monitoring of plans (using the defined

control points) and reporting to the master formal management.

Basically, the team is managed autonomously and partially by SCRUM Master who

provides training and guidance in the SCRUM approach, monitors the team work,

and attempts to remove any obstacles to productivity and reports to a product owner.
At the beginning of the project, according to the SCRUM methodology, formal

management chooses the owner of the product (Product Owner) and SCRUM

Master, who then elect the remaining team members.

In MSF, there are 6 role clusters and each role cluster has one or
more functional areas and each functional area may have one or

more responsibilities and the responsibilities have more tasks.

One role is not equal to one person responsible for it. One role
may be supported by multiple persons or depend on the size of

the project, one or more roles can be taken care by one person.

SCRUM team is cross-functional. Apart from developers, the SCRUM team will
include software testers, front-end designers etc. The SCRUM team members have

different skill sets and they train each other so that no single team member will be at

risk for the delivery of the project. All team members will help each other for
smooth completion of the sprint.

Change requests

Microsoft Solutions Framework supports the amendment request

between iterations.

SCRUM supports the amendment request among sprints.

During the Iteration with MSF (between 30 and 90 days),
changes are not permitted. However, the client (purchaser of

work) can be interrupted if it is estimated that certain changes

need to be implemented in particular iteration.

During the Sprint at SCRUM (maximum 30 days), changes are not permitted.
However, the product owner can interrupt the sprint if it is estimated that certain

changes need to be implemented in particular sprint and sprint can also be stopped

by him/her.

Quality

MSF provides a testing role to a developer who provides

feedback on the objectives relating quality solutions and
determines the actions that will be necessary for reaching the

level of quality. The testing applies decisions on the objectives,

relating to quality, strategy testing and acceptance criteria to be
used for quality measurement. Testing role also carries bug

tracking in accordance with defined internal procedures at the
level of business system.

In SCRUM when comes to testing, it is conducted by members of development team

or sometimes a dedicated Quality Analyst who is part of the SCRUM team. The
attitude of using development team members for testing in practice is not realistic

because testing entails specific organisation and documentation, specific tools and

technology and specific knowledge and skills, but also the specific mind-set of the
people who carry out testing.

Defining architecture

According to MSF, a program manager or dedicated architect is
in charge of defining the architecture. Solution and technical

architecture are carried over by them. After defining the

architecture, the whole team works on the solution.

In agile methodologies, principles of agile architecture are mainly the responsibility
of the team. SCRUM does not support formally defining the functions or roles in the

team, such as architect, developer, tester, etc. In such situations, people with

extensive knowledge and experience and therefore authority will always stand out in
a team as technological leaders of the team and their opinion will always have

extraordinary weight on the whole team.

Documentation

Full documentation cycle. When it comes to design, MSF

predicts creation of functional specifications. Since there is no

pre-defined form in the MSF framework, the way of
documenting defines not only the business system level and

internal standards, but also the level of each project.

Generating a minimum of documentation is positioned as an advantage. Tentatively

documentation can be divided into three groups: project documentation, project

management documentation and instructions for use and maintenance. When the
project documentation is concerned, in SCRUM usually two types of documents are

created: Project Backlog and Sprint Backlog. Both types of documents are written in

very short sentences that clearly define the required functionality. When the project
or team management documentation is concerned, SCRUM involves two types of

documents: Sprint Burndown chart and Release Burndown chart. Sprint Burndown

chart is used to monitor the progress of concrete Sprint day, while Release
Burndown chart is used to monitor the progress of the project after sprints. The

problem arises in large projects with more SCRUM teams when necessary to

compare the results of multiple teams or to present their joint effect. The problem is
calculated for Y axis which usually displays weight points (Story Points) who

burned the previous day (Sprint Burndown Chart) or in the previous sprint-in

(Release Burndown Chart). When it comes to the documents related to the
maintenance of the production and use of concrete solutions, according to SCRUM,

the team writes documentation maintenance solutions and user instructions in
compliance with the defined client requirements.

Applied Computer Systems

__ 2017/21

75

TABLE II

COMPARISON OF MICROSOFT SOLUTIONS FRAMEWORK TO SCRUM BY PRINCIPLES

Microsoft Solutions Framework SCRUM

1) Work toward a shared vision: It enables agility so that the team
members are able to make informed decisions quickly in the context of

achieving a vision.

Individuals and interactions over processes and tools: SCRUM is a team-based
approach to delivering value to the business. Team members work together to

achieve a shared business goal. The SCRUM framework promotes effective

interaction between team members, so the team delivers value to the business.

2) Deliver incremental value: Determine optimal increments and make
sure what is delivered has optimal value to stakeholders.

Working software over comprehensive documentation: Focus on

delivering valuable items sooner. SCRUM requires a working, finished
product increment as the primary result of every sprint.

A SCRUM team’s goal is to produce a product increment every sprint. The
increment may not yet include enough functionality for the business to decide to ship

it, but the team’s job is to ensure the functionality present is of shippable quality.

3) Stay agile, expect and adapt to change: Change can happen and the

organisation should be able to adapt and adjust to a change. Having an
agile way to handle a change helps minimise common disruption

caused by a change.

Responding to change by following a plan: SCRUM teams make frequent plans. For

starters, they plan the current sprint. However, the team’s goal is not to blindly
follow the plan; the goal is to create value and embrace a change. SCRUM teams

constantly respond to a change so that the best possible outcome can be achieved.

4) Partner with internal and external customers: This increases project
success because the internal and external customers are involved in

development of a project.

Customer collaboration over contract negotiation: SCRUM is a framework designed
to promote and facilitate collaboration. The team, especially the product owner,

collaborates with stakeholders to inspect and adapt the product vision so that the

product is as valuable as possible.

5) Establish clear accountability and shared responsibility: Team

member accountability leads to higher quality and all team members

should share responsibility for the overall solution and its deliverables.

Self-organising teams: A group of motivated individuals, who work together toward

a goal, have the ability and authority to take decisions and readily adapt to changing

demands. They work for themselves, manage their work, do not require command
and control and they communicate more with each other, they continuously enhance

their own skills etc. Unlike MSF, an induvial is not accountable instead the whole

team is accountable and shares the responsibility.

6) Foster open communications: Share information among team

members and the enterprise.

7) Empower team members: Empowering team members is important

in an ever-changing environment to help create a high performance
team.

8) Invest in quality: Quality should be checked and it should be

proactively incorporated into a delivery lifecycle. Quality of the
product should be considered important during and after development

of a product.

Definition of Done: It is a simple list of activities (writing code, coding comments,

unit testing, integration testing, release notes, design documents, etc.) that add
verifiable/demonstrable value to the product. Focusing on value-added steps allows

the team to focus on what must be completed in order to build software while

eliminating wasteful activities that only complicate software development efforts.

9) Learn from all experiences: This should help improve the processes
and minimise issues. This should happen at all levels, such as project

level, individual level and organisation level.

Sprint retrospective: The sprint retrospective is an important mechanism that allows
a team to continuously evolve and improve throughout the life of a project.

 Time boxing: Fixed time period for each planned activity.

 Empirical process control: There is transparency in SCRUM process with an idea of

inspection through early feedback from the customer and then adapting to

transparency and inspection by bringing improvements.

Microsoft Solutions Framework has a number of roles when

compared to SCRUM. Table III shows the mapping of roles

between MSF and SCRUM.

TABLE III

MAPPING OF MSF AND SCRUM ROLES

As seen in Table III, in SCRUM the product owner acts as

the representative of the product who performs product and

program management and he is also responsible for the quality

and operations of the project. The SCRUM team is multi-

disciplinary and cross-functional. The skill level varies from

developer to tester and user interface designer etc. The

SCRUM team will work as a team to finalise the architecture,

to test the product, to bring better user experience. In MSF,

activities are handled by separate roles. The analysis on

mapping of roles within MSF, rational unified process [17],

SCRUM and XP made by the authors is published in [18].

Table IV shows the mapping between MSF and SCRUM

process. Almost all of the high level processes of MSF can be

mapped with SCRUM processes but have an additional

process when compared to MSF. It is the review and retrospect

process. This process takes place during the end of every sprint

and it is actually a meeting where SCRUM teams, product

owner and stakeholders are present and the sprint is reviewed.

During the meeting, the events that went wrong or well, as

well as possible improvements are discussed and then the

actions are taken to improve the upcoming sprints.

TABLE IV

MAPPING OF MSF AND SCRUM PHASES AND ACTIVITIES

MSF SCRUM

Envision Initiate

Plan Plan and Estimate

Develop Implement

Stabilise
Implement (Part of Implementation
Process)

(No near equivalent process) Review and retrospect

Deploy Release

Microsoft Solutions Framework SCRUM

Product Management
Stakeholders

Product Owner Program Management

Testing
Release / Operations

Development team
Architecture

User Experience

Development
SCRUM Master

Applied Computer Systems

__ 2017/21

76

In the MSF, most of the project management responsibilities

are covered by the role of program manager, which owns all of

the project management area of the whole project. MSF is a

highly scalable framework, so it supports the team of any size

from small, large to complex. In larger projects, management

occurs at multiple levels. In complex projects, a project

manager or a project management team will be required. Since

MSF is a highly scalable framework when dealing with large

or complex projects, the project management can be

implemented in two ways, feature and function team. In the

case of the feature team, there is a team leader who performs

the project management duties and in the function team there

are multidisciplinary sub-teams and each team has a project

management role.

SCRUM is an agile way of managing software project.

Surprisingly, there is no role as a project manager in SCRUM,

but a project manager can be at the organisation level or from

stakeholders. SCRUM team is supported by a SCRUM master

and product owner. A SCRUM master or a product owner is

not a project manager and the team does not need to report to

them. SCRUM team is self-managed and the project is

managed by the team. This management occurs through daily

SCRUM meetings, sprint planning, sprint review and sprint

retrospective. SCRUM project management is different from

traditional project management. There should be made some

adjustments in activities, artefacts and the roles within the

project team. All the above-mentioned will work for small and

co-located teams but in the case of large projects with backlogs

and remote or distributed teams visibility is very important, so

many organisations mostly introduce some software tools to

centrally manage projects and this allows for distributed team

collaboration. Table V shows the comparison results according

to risk management in both software development processes.

Finally, in order to make a choice between methodologies

for software development based on existing real projects,

usually the ability of addressing the key issues by the

methodology is important. For the purposes of qualitative

comparison of SCRUM and MSF methodology, the following

critical questions are listed and can be quantified in the range

between 0 and 1 for each methodology:

1. Are the processes of methodologies clearly defined?

2. Does the client have a quick return on investment (ROI)?

3. Is it possible to change requirements for the duration of

iteration?

4. Is it possible to change requirements between sprints or

iteration?

5. Is documentation clearly defined?

6. Does duration of the iteration (sprint) have specified time?

7. Are roles clearly defined?

8. Are responsibilities of the roles clearly defined in small

projects?

9. Are responsibilities of the roles clearly defined in large

projects?

10. Does the development team work only on development

tasks?

11. How is the project implemented and how does it impact

team members?

12. Is project manager’s role defined?

13. Who defines architecture solutions?

14. Who does the testing?

15. Who define, monitor and manage risks?

16. Who assigns tasks to team members?

17. Are members of development team defined by

specialisations?

18. Who will work on release management and deployment?

19. Who will work on creating software builds?

20. How many hours does the team work in full composition

during the duration of iteration?

TABLE V

COMPARISON OF MICROSOFT SOLUTIONS FRAMEWORK TO SCRUM BY RISK MANAGEMENT

Microsoft Solutions Framework SCRUM

There is a discipline in MSF to deal with risks in the project. MSF has the
process of continuous identification of risk in the project. These risks will

be prioritised and sent through a six-stage process to detonate them.

In MSF, some strategies are implemented to deal with the risks throughout
the project.

MSF risk management process is as follows and is self-explanatory:

There is no specific discipline for SCRUM to deal with risks but like in MSF it
is a continuous process in SCRUM. In daily meetings and almost all processes

of SCRUM and mainly in review and retrospective meeting, the risks, the

things which went bad, the things which need to be improved will be added to
backlogs and dealt. This way, the risks are solved.

The following schema shows the way the risks are managed in SCRUM:

Applied Computer Systems

__ 2017/21

77

IV. THE PROPOSED HYBRID MODEL

Figure 7 shows an interactive view of the proposed Hybrid

Agile Framework project lifecycle. The Hybrid Agile

Framework takes SCRUM construction lifecycle (shown at the

top of Figure 7) and extends it to show the full delivery

lifecycle from the beginning of the project to the release of the

solution to production. The Hybrid Agile Framework lifecycle

is organised into three distinct phases with explicit milestones

and it is shown in the context of Solution Planning and

Application Management.

The Hybrid Agile Framework strives to provide sufficient

guidance for consultants to understand the process framework

without being overly prescriptive. Therefore, the Hybrid Agile

Framework is goal-driven. A goal-driven, suggestive approach

provides just enough guidance for delivery teams and is

flexible so that teams can tailor the process to fit in the

situation they find themselves. The mainstream agile mantra is

that Agile Software Development is iterative. The Hybrid

Agile Framework recognises that from the point of view of the

development team’s daily rhythm, the work proceeds

iteratively. Each day the development team is likely to iterate

back and forth between modelling, testing, coding, and

management activities, but the release rhythm proceeds

through different project phases. In the beginning, you focus

on initiation or start-up activities, in the middle you focus on

construction activities, and in the end you focus on deployment

activities.

The Hybrid Agile Framework addresses the project lifecycle

from the point of initiating the project through construction to

the point of releasing the solution into production (shown at

the bottom of Figure 7). You will notice each Sprint is not the

same. Projects evolve and the work emphasis changes as you

move through the lifecycle. To make this clear, the project is

partitioned into phases with light-weight milestones to ensure

you are focused on the right things at the right time, such as

initial visioning, architectural modelling, risk management,

and deployment planning.

Fig. 7. Hybrid Agile Framework.

Applied Computer Systems

__ 2017/21

78

The Hybrid Agile Framework lifecycle consists of the

following phases:

Solution Planning – a core activity during the sales process.

The purpose of Solution Planning is to define the solution, and

delivery approach will provide to the client. This includes

confirming scope, assessing capabilities and constraints,

confirming the architecture / solution concept, defining the

solution strategy, and defining the delivery mobilisation

approach.

Envision and Prepare – the goal is to identify the

stakeholders and their success criteria, develop or confirm the

project vision and assess whether the vision is technically

feasible. It is necessary to understand the high-level cost

estimate, schedule, and risks associated with the project.

Stakeholders’ agreement around the vision is obtained, the

initial development team is mobilised, and the project

environments are prepared. If Solution Planning is conducted

properly, most of the envisioning work is already completed.

In this case, the phase of Envision and Prepare mainly focuses

on mobilising the initial development team and preparing the

project environments.

Construct and Evolve – the goal is to establish the baseline

of the solution architecture and then complete the development

of the solution based upon the baseline architecture. The focus

of the initial Sprints in the Construct and Evolve phase is to

prove the architecture. The remaining functionality is then

developed in subsequent Sprints until the features for the

current release are complete.

Accept and Release – the goal is to confirm client

acceptance of the solution, prepare for a smooth deployment of

the solution to production, and then deploy the solution to

production, rolling it out to the end users.

Application Management – once the solution is deployed to

production, it is transitioned to the support organisation

responsible for operating and maintaining the solution.

From a development perspective, each Sprint provides an

increment of functionality to the product. The end of each

Sprint corresponds to a checkpoint where the development

team demonstrates to stakeholders that the objectives of the

Sprint are met. From a management perspective, the software

lifecycle is decomposed over time into three sequential phases,

each concluded by a major milestone.

These milestones provide evaluation criteria at the end of

each phase. Each phase is a span of time between two major

milestones and has specific focus and objectives. At the end of

each phase, assessment is performed to determine whether the

objectives of the phase have been met. A satisfactory

assessment allows the project to move to the next phase. When

a milestone is not met, more Sprints may be performed in the

current phase until the milestone is considered complete.

Achieving a milestone represents objective criteria used to

measure progress.

There are two additional milestones within the phases. The

proven architecture milestone is reached early in the phase of

Construct and Evolve, normally within one or two Sprints. At

this milestone, the stakeholders agree that the architecture is

stable and sufficient to satisfy the requirements and the

architecture has been prototyped where appropriate to address

major architectural risks. The deployment ready milestone is

reached late in the phase of Validate and Deploy. At this

milestone, all end user / support documentation is created and

all end users are trained and ready to use a new solution. The

support / operations organisation is ready to support the

solution, it has formally accepted it, and the system is ready to

be deployed and rolled out to the end users.

The Hybrid Agile Framework embraces SCRUM at its core.

It is an iterative, incremental process. The framework

structures software development in cycles of work called

Sprints, iterations of work which are typically 1–4 weeks long,

and take place one after the other without pause. Sprints are

time boxed – they end on a specific date whether the work has

been completed or not, and are never extended. At the

beginning of each Sprint, a cross-functional development team

selects items from a prioritised list of requirements, and

commits to complete them by the end of Sprint. Each workday,

the development team inspects its progress, and adjusts the

next steps needed to complete the work remaining. At the end

of Sprint, the SCRUM team reviews the Sprint with

Stakeholders, and demonstrates what it has built. The SCRUM

team obtains feedback that can be incorporated in the next

Sprint. The Hybrid Agile Framework emphasises having a

working solution at the end of the Sprint that is really “done”;

in the case of software, this means a code that is integrated,

fully tested and useable.

V. CONCLUSION AND FUTURE RESEARCH

Clear responsibilities and shared responsibilities,

empowerment of team members, focusing on business values,

shared vision of the project, agility, change management,

fostering open communication, learning from all the

experiences and investing in quality might be considered agile

principles methodology.

However, these principles are fundamental principles of

Microsoft Solutions Framework and they are not different

from the principles behind the agile manifesto. In the present

paper, the comparison of SCRUM as one of the most common

agile methodologies and MSF as a representative of traditional

methodology has been performed. Considering the high

coefficient of the two methodologies which can be obtained by

quantifying the key issues, we can conclude that SCRUM

methodology does not have primacy over MSF in terms of

development of software solutions.

Theory of MSF is well structured and defined, while for

SCRUM there are a lot of different opinions, contradictions

and inconsistencies. In real projects, methodology is still seen

as a set of recommendations (framework), and the organisation

of work on the development of software solutions should be

adapted to the specificities of business system and the team

that will implement the project.

Microsoft Solutions Framework is a disciplined software

development approach with proven and best practices,

adaptable guidelines and processes, as well as it follows

iterative methodology. On the other hand, SCRUM is an

iterative and incremental form of agile software development

and it focuses on providing value to a customer in a short

period of time. Taking into consideration advantages of both

Applied Computer Systems

__ 2017/21

79

methodologies, the authors propose the idea of hybrid

methodology, which combines discipline and phase division

borrowed from MSF and usage of sprints and minimal

documentation borrowed from SCRUM.

The role aspect is beyond the scope of this paper, so in

future the authors are planning to devote attention to this

aspect of software development process organisation.

REFERENCES

[1] Microsoft Solutions Framework [Online]. Available:

https://msdn.microsoft.com/en-us/library/jj161047(v=vs.120).aspx
[2] SCRUM Alliance, What is SCRUM? An Agile Framework for

Completing Complex Projects. Accessed: February 24, 2016.

[3] I. Sommerville, Software Engineering, 10th ed., Pearson Education,
2015.

[4] W. W. Royce, “Managing the Development of Large Software Systems,”

in Proceedings of IEEE WESCON, pp. 1–9, 1970.
[5] J. Crinnion, Evolutionary Systems Development, a practical guide to the

use of prototyping within a structured systems methodology, New York:

Plenum Press, 1991.
[6] R. Pressman, Software Engineering: A Practitioner's Approach, Boston:

McGraw Hill, 2010.

[7] K. Forsberg and H. Mooz, “7.17. System Engineering for Faster,
Cheaper, Better,” INCOSE International Symposium, vol. 8, no. 1, pp.

917–927, Jul. 1998. https://doi.org/10.1002/j.2334-5837.1998.tb00130.x

[8] B. Boehm, “A spiral model of software development and enhancement,”
ACM SIGSOFT Software Engineering Notes, vol. 11, no. 4, pp. 14–24,

Aug. 1986. https://doi.org/10.1145/12944.12948

[9] “Manifesto for Agile Software Development,” Agile Alliance, 2001.
[10] Software Development Models [Online]. Available:

http://istqbexamcertification.com/what-are-the-software-development-
models/

[11] K. Beck, Extreme Programming Explained: Embrace Change, Addison-

Wesley, 1999. ISBN: 978-0-321-27865-4.
[12] J. Martin, Rapid Application Development, Macmillan Publishing

Company, 1999.

[13] The Standish Group International, CHAOS Manifesto: The Laws of
CHAOS and the CHAOS 100 Best PM Practices, The Standish Group

International, 2011.

[14] D. West and J. S. Hammond, The Forrester Wave: Agile Development
Management Tools, Q2 2010, May 2010.

[15] VersionOne, 5th Annual Survey: 2010 - “The State of Agile

Development”, October 2010.
[16] K. Cathey, Software Engineering Process, Apple Inc. [Online].

Available: https://www-

s.acm.illinois.edu/iCal/workshops/general/Software-Engineering-
Slides.pdf

[17] P. Kruchten, The Rational Unified Process: An Introduction, Addison-

Wesley, 2004.
[18] O. Nikiforova, V. Nikulsins and U. Sukovskis, “Integration of MDA

framework into the model of traditional software development,”

Frontiers in Artificial Intelligence and Applications, vol. 187, issue 1,
2009, pp. 229-239. https://doi.org/10.3233/978-1-58603-939-4-229

Jai Vigneshwar Alavandhar received the

Bachelor’s degree in information
technology from Bharath University,

India, in 2011.

He received Master’s degree in applied
computer systems from Riga Technical

University in 2016.

Currently, he works as an Analyst
Programmer at KPMG Crimsonwing Ltd,

Malta.

His current research interests include agile
software development.

E-mail: jaivigneshwar@gmail.com

Oksana Ņikiforova received the Doctoral

degree in information technologies

(system analysis, modelling and design)
from Riga Technical University, Latvia, in

2001.

She is a Professor at the Department of

Applied Computer Science, Riga

Technical University. Her current research

interests include object-oriented system
analysis, design and modelling, especially

the issues in model-driven software

development.
E-mail: oksana.nikiforova@rtu.lv

https://doi.org/10.1002/j.2334-5837.1998.tb00130.x
https://doi.org/10.1145/12944.12948
https://doi.org/10.3233/978-1-58603-939-4-229

