
Applied Computer Systems 

 

27 

ISSN 2255-8691 (online) 

ISSN 2255-8683 (print) 
December 2016, vol. 20, pp. 27–35 

doi: 10.1515/acss-2016-0012 

https://www.degruyter.com/view/j/acss 

©2016 Ruslan Batdalov, Oksana Ņikiforova, Adrian Giurca.  

This is an open access article licensed under the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open. 

Extensible Model for Comparison of Expressiveness 

of Object-Oriented Programming Languages 

Ruslan Batdalov1, Oksana Ņikiforova2, Adrian Giurca3 
1, 2 Riga Technical University, Latvia, 3 Brandenburg Technical University, Germany

Abstract – We consider the problem of comparison of 

programming languages with respect to their ability to express 

programmers’ ideas. Our assumption is that the way of 

programmers’ thinking is reflected in languages used to describe 

software systems and programs (modelling languages, type theory, 

pattern languages). We have developed a list of criteria based on 

these languages and applied it to comparison of a number of widely 

used programming languages. The obtained result may be used to 

select a language for a particular task and choose evolution 

directions of programming languages. 

 

Keywords – Programming languages, programming language 

comparison, programming language expressiveness, 

programming language expressive power. 

 

I. INTRODUCTION 

A variety of existing object-oriented programming languages 

require programmers to be able to choose the most appropriate 

one (or ones) for a particular task. It is especially important in 

the current situation, when the traditional leaders among 

programming languages are gradually losing their positions [1] 

and the existing desire to have the “next great language” is 

acknowledged even by the designers of Java (although they do 

not share this desire) [2]. Therefore, comparison of 

programming languages is a topical issue for both programmers 

and language designers. 

One of the possible ways to compare programming 

languages is to compare functional opportunities that they give 

to programmers. A focus group discussion during the European 

Conference on Pattern Languages of Programs (EuroPLoP) 

acknowledged that programmers often experience difficulties 

when a programming language lacks features existing in other 

languages and when a particular language feature is only a 

special case of a more general concept [3]. In both cases, the 

desired behaviour is not supported by a programming language 

and must be implemented manually. This consideration shows 

that the information about correspondence between features of 

different languages and the supported / unsupported features is 

useful to programmers for switching between languages and to 

language designers for deciding on the features their languages 

lack. 

In our study, we consider functional opportunities of 

programming languages from the point of view of language 

expressiveness, i.e., its ability to express ideas of programmers’ 

thinking. This concept is hard to formalise, but it is often used 

in reasoning about languages (not only programming 

languages). For example, Stuart Russell and Peter Norvig 

indicated the limited expressiveness of programming languages 

in comparison with natural languages [4]. We believe that this 

fact always motivates development of programming languages 

towards higher expressiveness. A systematic analysis of 

expressiveness of programming languages may clarify the 

current stage of this process and the possible further directions. 

The goal of our study is to develop a solid basis for such 

analysis and validate it by means of application to a number of 

popular programming languages. The obtained comparison 

model may be used both by programmers for choosing a 

particular language for their tasks and by language designers for 

deciding on possible directions of language development. 

The remainder of the paper is organised as follows: Section II 

describes the background of the study and similar approaches. 

Section III explains method of comparison, including the set of 

comparison criteria. Section IV demonstrates how the 

developed criteria can be applied, and Section V concludes the 

paper. 

II. BACKGROUND AND RELATED RESEARCH 

The notion of expressiveness (also called expressive power 

or expressivity) of a programming language is the measure of 

the breadth of ideas that can be expressed using this language 

[5]. One should distinguish it from computational power related 

to the complexity of problems that can be solved. Almost all 

programming languages are Turing-complete and therefore 

have the same computational power, whereas their expressive 

power may differ significantly [5]. 

William Farmer distinguished between the theoretical 

expressiveness related to the set of ideas that can be expressed 

at all and the practical expressiveness, measuring how easy they 

can be expressed [6]. In our study, we are primarily interested 

in the practical expressiveness since it can provide a better 

guidance for choosing a programming language from a practical 

perspective. 

In the practical sense, expressiveness is often associated with 

the amount of code required to implement some functionality. 

For example, this approach is used in popular COCOMO II 

model [7]. Donnie Berkholz used the same meaning of the term 

in an empirical study covering and ranking over 50 

programming languages [8]. In our opinion, this approach 

allows obtaining useful information relatively quickly, but it is 

insufficient for a deeper analysis. It reduces the whole language 

expressiveness to one numeric indicator only and omits all 

information related to the particular language facilities 

expressing programmers’ ideas. Although, in general, 

quantitative indicators should be preferred to the qualitative 

ones, one quantitative indicator is definitely not enough to 



Applied Computer Systems 

________________________________________________________________________________________________ 2016/20 

28 

choose between languages consciously. Therefore, we believe 

that a comparison taking into account particular language 

features would provide data that are more valuable. 

The importance of considering particular language-level 

features when assessing expressiveness of programming 

languages was mentioned by Yizhou Zhang et al. [9]. This 

aspect of expressiveness is important for not only code brevity, 

but also efficiency because, according to Donald Knuth, 

programmers tend to use easier constructs instead of optimal 

ones [10]. Therefore, we believe that analysis of the range of 

facilities available in programming languages is essential in the 

study of their expressiveness. 

Žilvinas Vaira and Albertas Čaplinskas discussed the 

problem of programming language suitability to implement 

programmers’ design decisions [11]. This discussion is close to 

the concept of expressiveness as we understand it here and has 

the advantage of using the formal concept of a ‘design decision’ 

instead of a rather vague ‘idea’. Nevertheless, this formality 

may be too restrictive, for example, as we say below, one of our 

sources is the type theory, which is only indirectly related to 

design decisions. Therefore, we prefer to tolerate some 

vagueness and continue using the term ‘idea’. 

It seems that a model for comprehensive comparison of 

programming languages in terms of their features does not exist 

yet. Published studies tend to contain a deep analysis of one 

specific question or task, without covering the full breadth of 

language facilities [12]–[17]. Therefore, our goal is to fill this 

gap with a model that would be flexible enough to be applied to 

various object-oriented programming languages and that would 

cover a wide range of language facilities related to their 

expressiveness. 

III. METHOD OF COMPARISON 

This section describes our method of comparison, explains 

the limits of the study and presents the set of comparison criteria 

identified in the study. The comparison criteria are organised 

hierarchically according to similarities between them and 

summarised in Tables I–XII. Each row in these tables contains 

a number of language-level features, which are separate 

comparison criteria. Some of them are accompanied by 

clarifications in parentheses. We assume that for each such 

criterion, it is possible to say whether a particular language of 

language version supports it or not (although in some cases, it 

may be supported only in specific situations, for example, only 

for specific types of objects) and which language facilities 

(keywords, concepts, etc.) correspond to it. We strive to make 

our model as complete as possible, but absolute completeness 

is certainly an impossible ideal. Therefore, we intentionally 

design our model to be extensible in the sense that the 

hierarchical structure described below is suitable for inclusion 

of other language-level features, both existing and invented in 

future. The feature hierarchy is designed in such a way that we 

expect a higher level of the hierarchy to be the most stable one. 

The list of low-level language features will be definitely 

augmented in future, but we estimate the probability of 

appearing of a new element at the top level of the hierarchy as 

negligible (at least, within the object-oriented paradigm of 

programming). 

A. Basic Principles 

Since the expressive power of programming languages is 

related to the ideas representable in these languages, it may be 

compared by choosing a set of common ideas in terms of which 

developers see their programs and studying how easy they can 

be expressed. In our opinion, such ideas manifest themselves in 

languages used to describe programs, projects and solutions (for 

example, modelling languages) since such descriptions are to 

form a bridge between programmers’ mind and actual 

programs. We assume that these languages and descriptions 

represent, to some extent, the way of programmers’ thinking. 

The choice of particular description languages to analyse, on 

the one hand, should allow us to create a model that would be 

universal enough, but on the other hand, should be limited to fit 

into the scope of the study. We consider the following classes 

of description languages to be the most important for our task: 

 Modelling languages used to create models of software 

systems (typically, but not necessarily, before actual 

programming); 

 Mathematical theories providing a formal basis for 

concepts used by programmers and relationships between 

them; 

 Pattern languages, which give ready to use solutions to 

many practical problems. It is known that one of the most 

important functions of design patterns is to create a 

language for communicating solution description between 

programmers [18]. 

Many constructs used in these languages have direct 

counterparts in commonly used programming languages, and 

this relationship facilitates their usage for comparison. At the 

same time, some of them do not have such counterparts or are 

supported only partially. Our previous studies showed that 

dissecting these languages allows finding potential language-

level features that are not supported in the most popular existing 

programming languages at all or have only limited support [19], 

[20]. These considerations suggest that the constructs of the 

mentioned languages may form (after analysis and 

systematising) an appropriate basis for comparison. Thus, our 

approach may be summarised as follows: dissect the mentioned 

languages into elementary constructs (at the level with 

constructs of programming languages), systematise them into a 

structured set of comparison criteria and perform comparison of 

languages according to these criteria. 

It should be noted that description languages by themselves 

are unable to provide a complete set of comparison criteria since 

they are much less detailed than programming languages. 

Instead, we built a skeleton based on description languages and 

detailed it further in the course of actual comparison between 

programming languages. The data flow of this process is shown 

in Fig. 1. 

 



Applied Computer Systems 

________________________________________________________________________________________________ 2016/20 

29 

 

Fig. 1. Data flow of the process of building and applying comparison model. 

B. Scope of the Study 

This section describes the decisions taken with respect to the 

boundaries of the study and their motivation. 

We consider the following description languages, which are, 

in our opinion, representative of the classes mentioned above: 

 Unified Modeling Language (UML) – the industrial 

standard of software modelling [21]; 

 Type theory – the basis of calculi commonly used for 

formal description of programming languages [22]; 

 Patterns described in three classical sources: “Design 

Patterns” by Erich Gamma et al. [23], “Pattern-Oriented 

Software Architecture, A System of Patterns” by Frank 

Buschmann et al. [24], “Patterns of Enterprise Application 

Architecture” by Martin Fowler [25]. 

Similarities in the internal structure of these sources 

immediately suggest the top-level classes of comparison criteria 

that we can identify from them. The UML divides its diagrams 

into structure and behaviour diagrams [21]. The type theory 

pays less attention to this distinction, but studies both structural 

and behavioural aspects of data types [22]. At the same time, 

one of the classification dimensions used by Erich Gamma et 

al. in their seminal work on design patterns adds the third 

element to this classification: they divided patterns into 

creational, structural and behavioural [23]. Probably, a separate 

concept of object creation management and its difference from 

other types of behaviour is not as important for UML purposes 

as it is for the tasks solved by design patterns. In our opinion, 

for the goal of our study, the class of creational features is 

significant as well, but it should be generalised to the whole 

lifecycle of objects, not only their creation. Languages often 

vary in their approach to the object lifecycle management and 

provide a programmer with different opportunities. Thus, a 

three-part classification is used at the top level of our criteria 

hierarchy: structural, lifecycle and behavioural features. 

According to the primary goal of having a set of comparison 

criteria related to the ability of programming languages to 

express ideas of programmers’ thinking, some types of features 

are deliberately not included in our study: 

 Features of syntactical nature only that do not reflect 

separate ideas (although the decision on when to apply this 

requirement is often subjective); 

 Features dealing primarily with implementation issues, 

such as memory allocation rules in C++ (in a sense, these 

features also express some ideas, but they are hard to 

compare between languages because of different 

assumptions about the run-time environment and because 

languages other than C++ are generally very poor in such 

features); 

 Features that are incomparable between languages due to 

their tight coupling to a concrete language and its 

structure, such as reflection mechanisms; 

 Features of popular frameworks, not languages themselves 

(primarily, this restriction is imposed only to make the 

goal feasible because a similar comparison of frameworks 

would also be useful). 

The languages to compare are chosen according to the 

following criteria: 

 9 out of the first 10 programming languages in the TIOBE 

index of the popularity of programming languages as of 

June 2016: Java, C++, Python, C#, PHP, JavaScript, Perl, 

Visual Basic .NET and Ruby [1]. C, occupying the second 

place in this ranking, is omitted from our study due to the 

lack of object-oriented capabilities. 

 Three more recent languages, which have many features 

absent from more popular ones and show the current 

trends in programming language development (although 

these languages have not gained great popularity yet): 

Scala, Go (Golang) and Kotlin. 

We believe that the boundaries of the study defined in this 

way allow us to obtain a useful and sufficiently universal set of 

comparison criteria. 

C. Structural Features 

Structural features are related to the static structure of 

programs. In our opinion, two main respects in which languages 

differ are the types of objects that exist in the language and the 

way they are related to each other. Therefore, our list of 

comparison criteria is organised according to these questions. 

Possible types are well studied in the established type theory. 

The type theory distinguishes between base (or uninterpreted) 

types and compound types built from other ones [22]. 

Languages differ in supported base types (integers, Booleans, 

etc.), methods of building compound types (arrays, records, 

etc.), and types of literals supported for each type (for example, 

decimal, hexadecimal, octal or binary integer literals). The 

identified language features are given in Tables I and II. 

 

 

 

 



Applied Computer Systems 

________________________________________________________________________________________________ 2016/20 

30 

TABLE I 

BASE TYPES 

Group Features 

1. Signed integer 
Supported type(s); decimal, hexadecimal, 
octal, binary literals 

2. Unsigned integer 
Supported type(s); decimal, hexadecimal, 
octal, binary literals 

3. Floating-point 
Supported type(s); decimal, hexadecimal 
literals 

4. Complex Supported type(s); literals 

5. Boolean Supported type; literals 

6. Character Supported type(s); literals; character escaping 

7. String 
Supported type(s); string literals; regular 
expression literals; character escaping; 

variable interpolation 

8. Date Supported type(s); literals 

9. Raw bit string Supported type(s); literals 

10. Function as an object Supported type(s) 

TABLE II 

COMPOUND TYPES 

Group Features 

1. Reference Supported type(s) 

2. Number-indexed 
compounds (array) 

Supported type(s); literals 

3. Name-indexed 
compounds 

 

3.1. With fixed set of 

keys (record) 
Supported type(s); literals 

3.2. With variable set of 
keys (associative array) 

Supported type(s); literals 

3.3. Set Supported type(s); literals 

3.4. Class 
Supported type(s); underlying 

implementation 

3.5. Interface Supported type(s) 

4. Variants  

4.1. General variants Supported type(s) 

4.2. Option (nullable 

type) 
Supported type(s); undefined value 

4.3. Enumeration 
Supported type(s); underlying value  

may be set 

It should be noted that the distinction between base and 

compound types is not the same as the distinction, existing in 

Java [2] and some other languages, between primitive and 

reference types. The latter distinction does not form a good 

basis for comparison because it does not exist in all languages 

(for example, Python considers every value or variable to be an 

object [26]). For this reason, as well as in order to make our 

comparison criteria closer to the established type theory, we 

differentiate between base and compound types depending on 

whether the data belonging to an object are treated as an atomic 

value or as a group of values of other types. This interpretation 

is still not universal (for example, strings may be treated as 

either atomic values or sequences of characters, i.e., cannot be 

uniformly classified as a base or as a compound type), but 

allows forming a set of comparison criteria. 

For the sake of universality, we consider classes and 

interfaces to be separate compound types. This distinction 

generally does not exist in the languages themselves – for 

example, in the type theory interpretation, C++ and Java classes 

are just a specific kind of records [22]. Nevertheless, in some 

other languages (for example, JavaScript and Python), classes 

are implemented by means of associative arrays instead of 

records [26], [27], and Perl allows using arbitrary data 

structures [28]. To make our model suitable for all these cases, 

we consider classes and their possible implementations 

separately and include underlying class implementation as a 

comparison criterion as well. 

Relationships between classes (the most important kind of 

types in object-oriented languages [22]) and objects are 

reflected in UML structural diagrams [21], but different 

semantics of relationships, which is not always reflected in a 

diagram, should also be considered. The list of types of 

relationships used in our model is created by systematisation of 

relationships described in the UML standard [21], type theory 

[22], our previous studies [19], [20], and directly in language 

specifications [2], [26]–[36]. These relationships are given in 

Tables III, IV and V. 

In addition to the opportunity to define a relationship of a 

particular kind, our set of comparison criteria contains features 

related to the opportunity to prohibit or restrict creation of such 

relationships. For example, a language may allow creating a 

class inheritance from which is prohibited or imposing a 

restriction on multiplicity of a relationship between objects. 

TABLE III 

CLASS-TO-CLASS RELATIONSHIPS 

Group Features 

1. Specialisation 

(inheritance) 
 

1.1. Interface extension 

Relationship may be defined; classes may be 
incomplete without inheritance (abstract); 

inheritance may be prohibited; inheritance 
may be restricted to a set of classes known in 

advance (algebraic types) 

1.2. Implementation 
inheritance 

Relationship may be defined; methods may 
be declared without implementation 

(abstract); method overriding may be 
prohibited; how the problem of diamond 

inheritance of data and methods is solved 

1.3. Subclassing a 

member 
Relationship may be defined 

1.4. Arbitrary predicate Relationship may be defined 

2. Generalisation Relationship may be defined 

3. Interface realisation 
Relationship may be defined; how the 
problem of diamond inheritance of data and 

methods is solved 

4. Interface extraction Relationship may be defined 

5. Parameterised types  

5.1. Type parameters 
Relationship may be defined; parameter may 

be bounded; parameter may be variant; 
default parameters 

5.2. Usage-site variance 
of type parameters 

Relationship may be defined; parameter may 
be bounded 

5.3. Value parameters Relationship may be defined; default parameters 



Applied Computer Systems 

________________________________________________________________________________________________ 2016/20 

31 

TABLE IV 

OBJECT-TO-OBJECT RELATIONSHIPS 

Group Features 

1. Binary  

1.1. * -> 0..1 Relationship may be defined; source 
multiplicity may be restricted; destination may 

be declared obligatory; data may be assigned to 

a link; aggregation semantics may be added; 
inheritance semantics may be added  

(prototypal inheritance) 

1.2. * -> * Relationship may be defined; source 
multiplicity may be restricted; destination 

multiplicity may be restricted; data may be 
assigned to a link; aggregation semantics may 

be added; inheritance semantics may be added  

(prototypal inheritance) 

2. n-ary Relationship may be defined 

TABLE V 

CLASS-TO-OBJECT RELATIONSHIPS 

Group Features 

1. Class members  
(static members) 

 

1.1. 1 -> 0..1 Relationship may be defined; member  
may be declared obligatory 

1.2. 1 -> * Relationship may be defined; multiplicity  
may be restricted 

2. From class to 

objects of this class 

 

2.1. 1 -> 1 (singletons) Relationship may be defined 

2.2. 1-> *  

(classes as collections) 

Relationship may be defined; multiplicity  

may be restricted 

 

The last group of structural features is related to namespace 

manipulation, i.e., directives affecting visibility of classes and 

objects. These features are given in Table VI. 

TABLE VI 

NAMESPACE MANIPULATION 

Group Features 

1. Import  

1.1. Individual type May be imported; alias may be defined 

1.2. Individual object May be imported; alias may be defined 

1.3. Whole 

namespace/package 

May be imported; supplier may define what 

can be imported; importer may choose what to 
import 

2. Package merge May be performed 

3. Access control  

3.1. Namespace/package Access may be restricted 

3.2. Top-level types  

and objects 

Access may be restricted; access may be 

provided individually 

3.3. Inner types and 
objects (defined within 

another type) 

Access may be restricted; access may be 
provided individually 

 

D. Lifecycle Features 

This group of criteria contains language features related to a 

specific kind of program behaviour – management of object 

lifecycle and bindings (for example, binding of a name to an 

object, an object to a value, etc.). Programming languages tend 

to undertake these functions in order not to distract a 

programmer from implementing the main logic of a program; 

therefore, we consider these features separately from the 

behavioural ones. 

The lifecycle of an object consists of a number of phases 

(allocation, initialisation, etc.). A compiler or a run-time 

environment (RTE) may provide the logic of these phases, but 

does not always do this. For example, C++ does not have a 

garbage collector performing automatic memory deallocation 

[29], and this fact requires a special care from a programmer. 

On the other hand, even if the lifecycle management logic is 

provided, a language may allow changing it when necessary. 

Object initialisers (often called constructors) are an example of 

such an opportunity. These features (standard lifecycle 

management logic and the opportunity to redefine it) are given 

in Table VII. 

TABLE VII 

OBJECT LIFECYCLE 

Group Features 

1. Allocation Provided by a compiler/RTE; may be 
(re)implemented by a programmer 

2. Initialisation Provided by a compiler/RTE; may be 
(re)implemented by a programmer 

3. Finalisation Provided by a compiler/RTE; may be 
(re)implemented by a programmer 

4. Deallocation Provided by a compiler/RTE; may be 

(re)implemented by a programmer 

 

The language-level features related to various bindings are 

the opportunity to set or change the binding, the opportunity to 

check current binding (for example, whether an object belongs 

to a class) and the opportunity to prohibit further changes (for 

example, to declare an object to be constant). A language may 

provide different opportunities in this respect at different stages 

of program or object lifecycle. Therefore, Table VIII contains 

the list of bindings considered in our model together with 

different phases when a binding may be defined or changed. 

TABLE VIII 

BINDINGS 

Group Features 

1. Name-to-type  
(compile-time type) 

 

1.1. Compilation 
phase 

Binding may be defined; binding may be 
inferred 

2. Object-to-type  
(run-time type) 

 

2.1. Allocation phase Binding may be defined; further rebinding may 

be prohibited 

2.2. Initialisation 

phase 

Binding may be changed; further rebinding may 

be prohibited 

2.3. Run-time phase Binding to exact class may be checked; binding 
to a class or its subclasses may be checked; 

binding may be changed 

3. Name-to-object (in 

a practical sense, 
name-memory bucket) 

Binding may be defined; further rebinding may 

be prohibited 



Applied Computer Systems 

________________________________________________________________________________________________ 2016/20 

32 

4. Object-to-value  

(object state) 

 

4.1. Initialisation 

phase 

Binding may be defined; binding may be 

deferred (lazy evaluation); further rebinding 
may be prohibited for an object; further 

rebinding may be prohibited for the whole class 

(immutable classes) 

4.2. Run-time phase Further rebinding may be prohibited 

5. Name-to-value Binding may be defined; further rebinding may 

be prohibited 

6. Abstract class-to-
default 

implementation 

 

6.1. Compile-time Binding may be defined; further rebinding may 
be prohibited 

6.2. Run-time Binding may be changed; further rebinding may 

be prohibited 

Binding of a name to a value is not a separate type of binding, 

but rather the result of joint action of the two preceding ones 

(name-to-object and object-to-value). At the same time, it is 

convenient to reason in terms of this binding; therefore, we 

include it into the list of comparison criteria. Binding of an 

abstract class to its default implementation is not widely 

supported at the language level [20]; it is rather associated with 

dependency injection in frameworks (for example, Spring 

Framework [37]). Nevertheless, we include it too because some 

languages have limited support of it. 

E. Behavioural Features 

The group of behavioural features contains features that are 

used to implement program logic. Their primary source is direct 

comparison and systematisation of programming language 

specifications [2], [26]–[36] because theoretical studies tend to 

use just a few basic operations, not reducible to each other. For 

example, lambda-calculus, used in the type theory, contains 

only one operation of beta-reduction and a few reduction 

strategies (for example, call by name and call by value) [22]. 

Real languages, on the other hand, contain many different 

operations, even if some of them may be implemented using 

other ones. At the same time, unlike theoretical studies, design 

pattern descriptions are an appropriate source to identify 

potential language-level behavioural features as we showed in 

[20]. Behavioural features used in our comparison model are 

given in Tables IX, X, XI and XII. 

TABLE IX 

CALLS BETWEEN OBJECTS 

Group Features 

1. Object call Synchronous request-response; asynchronous 
request-response; pipe&filter; broadcast; 

blackboard; publish-subscribe; callable objects 

2. Call arguments Self-reference (the object for which the method 

is called); call by value; changeable call by 
reference; unchangeable call by reference;  

call by name (lazy evaluation of expressions); 

default arguments; named arguments; open 
argument list 

3. Returning result All at once; piece by piece 

4. Exception transfer Checked exceptions; unchecked exception; 
exceptions carrying values 

5. Function 

overloading 

Functions can be overloaded; operators can be 

overloaded; call dispatch by compile-time class; 

call dispatch by run-time class 

6. Method overriding Methods can be overridden; call dispatch by 
compile-time class; call dispatch by run-time 

class; duck typing; covariant return types 

TABLE X 

CONTROL STRUCTURES 

Group Features 

1. Assignment Data copy; aliasing; destructuring assignment 

2. Conditional 

branching 

If-then-else; switch 

3. Iteration While-loop starting with condition test; while-
loop starting with loop body execution; for-alias 

for while-loop; for-each loop 

4. Control transfer Arbitrary control transfer (goto);  
exit from a loop; next iteration; immediate 

return; exception raising; condition assertion 

5. Exception handling Exception handler; blocks executed 
independently on whether an exception occurred 

(finally); automatic resource closing 

6. Thread 
synchronisation 

Explicit locks; implicit locks; transactional logic 

TABLE XI 

OPERATORS IN EXPRESSIONS 

Group Features 

1. Arithmetic Increment; decrement; addition; subtraction; 
multiplication; integer division; division of 

integers with floating-point result; floating-point 

division; division of floats with rounding to integer; 
remainder for integer operands; remainder for 

floating-point operands; exponentiation; matrix 

multiplication; shortcut assignment 

2. Bitwise Complement; left shift; signed right shift; 
unsigned right shirt; and; or; xor; shortcut 

assignment 

3. Logical Not; and; or; xor; shortcut assignment 

4. String Concatenation; repetition; shortcut assignment 

5. Comparison Comparison for equality; comparison for 
identity; numerical relational operators; string 

relational operators; regexp matching; collection 

membership check 

6. Compound-type 
accessors 

Number-indexed; name-indexed; name-indexed 
removal; complex queries 

7. Type control Type cast; referencing; dereferencing 

8. Pseudo-control 
structures 

Conditional expressions; coalescing;  
for-comprehension 

9. Object-oriented 
operators 

Object instantiation; object destroy; reference  
to superclass; instance of 

10. Anonymous types Anonymous functions; anonymous classes; 
anonymous variant types; anonymous 

enumerations 

TABLE XII 

OTHER OPERATIONS 

Group Features 

1. Delegation Get/set; generator; arbitrary delegation; self-
reference preservation 

2. Undo/redo/logging Undo/redo/logging implemented in object itself; 
undo/redo/logging implemented in executor 



Applied Computer Systems 

________________________________________________________________________________________________ 2016/20 

33 

IV. APPLICATION CASES OF COMPARISON CRITERIA 

In this section we demonstrate three use cases of application 

of the developed model and explain how the results of the 

comparison should be interpreted (especially, the negative 

ones). 

A. Comparison of Supported Features 

Table XIII shows differences in support of structural 

relationships (features from Tables III–V) between Java and 

Scala. The features supported in both languages or supported in 

neither language are not included. This use case may be applied 

when we are interested in features of one language that are not 

supported in another one. 

TABLE XIII 

JAVA VS SCALA: STRUCTURAL RELATIONSHIPS 

Feature Java [2] Scala [34] 

III. Class-to-class 
relationships 

  

1. Specialisation 
(inheritance) 

  

1.1. Interface extension   

Inheritance may be 
restricted to a set of 

classes known in 
advance (algebraic 

types) 

No If subclasses are 
defined in the same 

source file (sealed 
classes) 

5. Parameterised types   

5.1. Type parameters   

Relationship may be 
defined 

>=5.0 (generics) Yes (parameterised 
types) 

Parameter may be 
bounded 

>=5.0 (extends) Yes (<:, >:) 

Parameter may be 

variant 

Only for standard 

arrays (they are 

covariant) 

Yes (+/− annotations) 

Default parameters No Yes (implicit) 

5.2. Usage-site 
variance of type 

parameters 

  

Relationship may be 
defined 

>=5.0 (? type 
parameters) 

>=2.6 (forSome) 

Parameter may be 

bounded 

>=5.0 (extends, 

super) 

>=2.6 (<:, >:) 

V. Class-to-object 

relationships 

  

1. Class members 
(static members) 

  

1.1. 1 -> 0..1   

Relationship may be 
defined 

Yes (static members) No 

1.2. 1 -> *   

Relationship may be 
defined 

Yes (static member 
collections) 

No 

2. From class to objects 
of this class 

  

2.1. 1 -> 1 (singletons)   

Relationship may be 
defined 

No Yes (object) 

B. Looking for Equivalent Keywords 

Table XIV matches equivalent phases of object lifecycle 

management (features from Table VII) in C++ and in Python. 

Unlike Table XIII, features supported in both languages are 

included. This use case may be applied when we want to find 

constructs of one language equivalent to the constructs of 

another one (for example, which method plays the same role in 

Python as a constructor in C++). 

TABLE XIV 

C++ VS PYTHON: OBJECT LIFECYCLE 

Feature C++ [29] Python [26] 

1. Allocation   

Provided by a 
compiler/RTE 

Yes (memory required 
for class data) 

Yes (empty 
dictionary) 

May be 
(re)implemented  

by a programmer 

Yes (new operator) Yes (__new__ 
method, metaclass 

definition) 

2. Initialisation   

Provided by a 

compiler/RTE 

No-op (memory is not 

initialised) 

Yes (empty 

dictionary) 

May be 

(re)implemented  
by a programmer 

Yes (initialisation, 

constructor) 

Yes (__init__ method) 

3. Finalisation   

Provided by a 
compiler/RTE 

No-op No-op 

May be 
(re)implemented  

by a programmer 

Yes (destructor) Yes (__del__ method) 

4. Deallocation   

Provided by a 

compiler/RTE 

Yes, but for pointer 

types requires explicit 
call (delete) 

Yes (garbage 

collection) 

May be 
(re)implemented  

by a programmer 

Yes (delete operator) No 

 

C. Studying Spread of Feature Support 

Piecewise return of the return value of a function is a 

relatively new feature in modern programming languages 

(although it is just a special case of co-programs, known since 

the late 1950s [10]). Table XV shows which languages and their 

versions support this feature and which keywords they use to 

implement it. This use case may be applied when we are 

interested in how widely a particular language feature is 

supported. 

TABLE XV 

SUPPORT OF PIECE-BY-PIECE RETURN FROM A FUNCTION 

Language Supported 

Java No 

C++ No 

Python >=2.2 (yield) 

C# >=2.0 (yield return) 

PHP >=5.5 (yield) 

JavaScript >=2015 (yield) 



Applied Computer Systems 

________________________________________________________________________________________________ 2016/20 

34 

Perl No 

VB .Net >=11.0 (Yield) 

Ruby No 

Scala May be emulated (lazily evaluated 
data structures, e.g., Stream) 

Go May be emulated (channels) 

Kotlin No 

As a side effect, comparison of programming languages in 

this way helps avoid pitfalls related to the different functionality 

of the same keywords in different languages (similar to ‘false 

friends’ in natural languages). For example, Ruby has the yield 

keyword too, and it may be appealing to assume that this 

keyword does the same as in other languages. However, Ruby 

yield is a specific way of calling a subroutine (calling a block 

of code passed as a method parameter), not of returning result 

[33]. Therefore, it would be incorrect to equate Ruby yield with 

yield in other languages, although all of them are related to the 

control transfer and can be used to solve the same tasks. 

D. Interpretation of Comparison Results 

The comparison tables given above consider only those 

features to be supported that have direct or almost direct 

counterparts in the languages under analysis. They do not 

describe how to implement equivalent functionality in the 

language if such a direct counterpart does not exist. 

In order to avoid misunderstanding, it is necessary to explain 

what the absence of support means from the practical point of 

view. It does not mean that the corresponding task cannot be 

solved using the language. All considered languages are 

Turing-complete [38], which means that we can solve any task 

in any of these languages or cannot solve it on a computer at all. 

Therefore, new language features do not extend the set of 

solvable tasks. Instead, they can give such benefits as, for 

example, programmers’ convenience and program safety. 

In our opinion, the classification used in our study provides 

a general guidance on the consequences of the absence of a 

particular feature (even though these rules do not work always): 

 Absence of a behavioural feature means that the required 

behaviour should be implemented using other behavioural 

features. Obviously, it is always possible, but may require 

extra code. Often, but not always, this code may be 

componentised into a separate function and reused (many 

such examples may be found in popular libraries and 

frameworks). 

 Absence of a structural feature related to a type means that 

the task should be solved using other data types. It may 

lessen type safety. For example, if the program logic 

requires that the value a particular variable lies in a 

particular range, using an integer variable instead requires 

manual conditions checks, which can be accidentally 

omitted. 

 Absence of a structural feature related to a relationship 

means that a programmer must bear this relationship in 

mind without any support from the compiler. It may 

require re-implementing some code (otherwise provided 

by the compiler) and lessen type safety because the 

relationship is not under the type control. 

 Absence of a lifecycle feature is a more difficult case. 

Since lifecycle management and binding management are 

usually ensured by a compiler, insufficiency of its 

facilities may require the programmer to write a lot of low-

level code. Inability to change a binding may require re-

creating an object completely. At the same time, inability 

to prohibit changing a binding (for example, inability to 

ensure that the value of an object will never change) 

lessens the safety of a program. 

Therefore, we believe that even though the absence of a 

feature still allows a programmer to implement its function 

using other ones, it may make a program more complex or less 

safe (or both). 

V. CONCLUSION AND FUTURE RESEARCH 

Our study addressed the problem of comparison of object-

oriented programming languages in respect of their expressive 

power, i.e., their ability to express ideas in terms of which 

programmers think about their programs. Analysis of a few 

languages used for the description of programs and software 

systems (UML, type theory, most popular design patterns) 

allowed us to form a basis for such comparison. This basis was 

validated and detailed in actual comparison of a number of 

object-oriented programming languages. The resulting 

comparison tables may be used for pairwise or group-wise 

comparison of programming language expressiveness, 

determining language construct equivalent to the ones of 

another language, as well as studying the degree of support of a 

particular language-level feature in different languages. 

Possible future directions of the research are as follows: 

 Development of a graphical interface for convenient usage 

of full comparison tables developed in the study. 

 Studying how the developed qualitative indicators are 

related to the quantitative ones (such as number of lines of 

code) and to higher-level tasks (for example, which features 

are important in web programming and which are not). 

 Application of the developed comparison model to other 

programming languages. 

 Extending the model with new language-level features, 

both existing in some languages and not existing currently, 

but motivated by the theory or practical tasks. 

 Studying opportunities to add missing features to 

programming languages that currently do not have them. 

ACKNOWLEDGMENT 

We would like to thank two anonymous peer reviewers for 

their valuable comments, questions and suggestions. 

REFERENCES 

[1] Matrix Resources, “June TIOBE index indicates the fall of programming 
market leaders,” June 2016. [Online]. Available: 

http://www.matrixres.com/resources/tech-trends/june-tiobe-index-indicates-

the-fall-of-programming-market-leaders/ [Accessed: Nov. 28, 2016]. 
[2] J. Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley, “The Java 

language specification: Java® SE 8 edition,” March 2015. [Online]. 



Applied Computer Systems 

________________________________________________________________________________________________ 2016/20 

35 

Available: http://docs.oracle.com/javase/specs/jls/se8/jls8.pdf [Accessed: 

Nov. 28, 2016]. 

[3] R. Batdalov, “Is there a need for a programming language adapted for 
implementation of design patterns?” in Proceedings of the 21st European 

Conference on Pattern Languages of Programs (EuroPLoP), Irsee, 

Germany, July 6–10, 2016. 
[4] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 

Englewood Cliffs, NJ, USA: Prentice Hall, 1995. 

[5] A. Leitão, S. Proença, “On the expressive power of programming 
languages for generative design: the case of higher-order functions,” in 

Proceedings of the 32nd International Conference on Education and 

Research in Computer Aided Architectural Design in Europe (eCAADe), 
Newcastle upon Tyne, England, Sep. 22–26, 2014, pp. 257–266. 

[6] W. M. Farmer, “Chiron: a multi-paradigm logic,” Studies in Logic, 

Grammar and Rhetoric, vol. 10, no. 23, 2007, pp. 1–19. 
[7] S. C. McConnell, Code Complete, Microsoft Press, 2004. 

[8] D. Berkholz, “Programming languages ranked by expressiveness,” March 

2013. [Online]. Available: 
http://redmonk.com/dberkholz/2013/03/25/programming-languages-

ranked-by-expressiveness/ [Accessed: Nov. 28, 2016]. 

[9] Y. Zhang, M. C. Loring, G. Salvaneschi, B. Liskov and A. C. Myers, 
“Lightweight, flexible object-oriented generics” in Proceedings of the 

36th ACM SIGPLAN Conference on Programming Language Design and 

Implementation, Portland, OR, June 13–17, 2015, pp. 436–445. 
https://doi.org/10.1145/2737924.2738008 

[10] D. E. Knuth, The Art of Computer Programming: Fundamental 
Algorithms, Addison-Wesley, 1997. 

[11] Ž. Vaira and A. Čaplinskas, “Software engineering paradigm independent 

design problems, GoF 23 design patterns, and aspect design,” 
Informatica, vol. 22, no. 2, pp. 289–317, Apr. 2011. 

[12] Z. Anik and O. F. Baykoç, “Comparison of the most popular object-

oriented software languages and criterions for introductory programming 
courses with analytic network process: a pilot study,” Computer 

Applications in Engineering Education, vol. 19, no. 1, pp. 89–96, March 

2011. https://doi.org/10.1002/cae.20294 
[13] N. Archvadze and M. Pkhovelishvili, “Reforming the trees – C# and F# 

comparison,” in Proceedings of the 4th International Conference on 

Problems of Cybernetics and Informatics (PCI), Baku, Azerbaijan, Sep. 
12–14, 2012, pp. 1–4. https://doi.org/10.1109/ICPCI.2012.6486287  

[14] B. M. Brosgol, “A comparison of generic template support: Ada, C++, 

C#, and Java ™,” in Proceedings of the 15th Ada-Europe International 
Conference on Reliable Software Technologies (Lecture Notes in 

Computer Science), Valencia, Spain, June 14–18, 2010, pp. 222–237. 

https://doi.org/10.1007/978-3-642-13550-7_16 
[15] R. Lämmel, M. Leinberger, T. Schmorleiz and A. Varanovich, 

“Comparison of feature implementations across languages, technologies, 

and styles,” in Proceedings of Software Evolution Week / IEEE 
Conference on Software Maintenance, Reengineering, and Reverse 

Engineering (CSMR-WCRE), Antwerp, Belgium, Feb. 3–6, 2014,  

pp. 333–337. https://doi.org/10.1109/csmr-wcre.2014.6747188  
[16] M. Stein and A. Geyer-Schulz, “A comparison of five programming 

languages in a graph clustering scenario,” Journal of Universal Computer 

Science, vol. 19, no. 3, pp. 428–456, 2013. 
[17] N. Togashi and V. Klyuev, “Concurrency in Go and Java: performance 

analysis” in Proceedings of the 4th IEEE International Conference on 

Information Science and Technology (ICIST), Shenzen, China, Apr. 26–
28, 2014, pp. 213–216. https://doi.org/10.1109/icist.2014.6920368 

[18] F. Buschmann, K. Henney and D. C. Schmidt, Pattern-Oriented Software 

Architecture Volume 5: On Patterns and Pattern Languages, Wiley, 2007. 
[19] R. Batdalov, “Inheritance and class structure,” in Proceedings of the 1st 

International Scientific-Practical Conference Object Systems – 2010, 

Rostov-on-Don, Russia, May 10–12, 2010, pp. 92–95. 
[20] R. Batdalov and O. Nikiforova, “Towards easier implementation of design 

patterns,” in Proceedings of the Eleventh International Conference on 

Software Engineering Advances (ICSEA 2016), Rome, Italy, August 21–
25, 2016, pp. 123–128. 

[21] OMG, “OMG Unified Modeling Language ™ (OMG UML),” March 

2015. [Online]. Available: http://www.omg.org/spec/UML/2.5/PDF 
[Accessed: Nov. 28, 2016]. 

[22] B. C. Pierce, Types and Programming Languages, MIT Press, 2002. 

[23] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: 
Elements of Reusable Object-Oriented Software, Addison-Wesley 

Publishing Company, 1995. 

[24] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal, Pattern-
Oriented Software Architecture: A System of Patterns, Wiley, 2013. 

[25] M. Fowler, Patterns of Enterprise Application Architecture, Addison-

Wesley, 2003. 

[26] Python Software Foundation, “The Python Language Reference,” Oct. 
2016. [Online]. Available: 

https://docs.python.org/3/reference/index.html [Accessed: Nov. 28, 2016]. 

[27] Mozilla Developer Network, “JavaScript Reference,” November 2016. 
[Online]. Available: 

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference 

[Accessed: Nov. 28, 2016]. 
[28] Perl 5 Porters, “Language Reference.” [Online]. Available: 

http://perldoc.perl.org/index-language.html [Accessed: Nov. 28, 2016]. 

[29] ISO/IEC, “Information technology – Programming languages – C++,” 
ISO/IEC standard 14882:2014(E), Dec. 15, 2014. 

[30] Microsoft Corporation, “C# Language Specification: Version 5.0,” 2012. 

[Online]. Available: 
https://www.microsoft.com/en-us/download/details.aspx?id=7029 

[Accessed: Nov. 28, 2016]. 

[31] PHP Group, “Language Reference,” 2016. [Online]. Available: 
http://www.php.net/manual/en/langref.php [Accessed: Nov. 28, 2016]. 

[32] Microsoft Corporation, “The Microsoft® Visual Basic® Language 

Specification: Version 11.0,” 2016. [Online]. Available: 
https://www.microsoft.com/en-us/download/details.aspx?id=15039 

[Accessed: Nov. 28, 2016]. 

[33] ISO/IEC, “Information technology – Programming languages – Ruby,” 
ISO/IEC standard 30170:2012(E), April 15, 2012. 

[34] M. Odersky, P. Altherr, V. Cremet, G. Dubochet, B. Emir et al., “Scala 
Language Specification: Version 2.11.” [Online]. Available: 

http://www.scala-lang.org/files/archive/spec/2.11/ [Accessed: Nov. 28, 2016]. 

[35] Google, “The Go Programming Language Specification,” May 31, 2016. 
[Online]. Available: 

https://www.golang.org/ref/spec [Accessed: Nov. 28, 2016]. 

[36] JetBrains, “Kotlin Language Documentation.” [Online]. Available: 
http://www.kotlinlang.org/docs/kotlin-docs.pdf [Accessed: Nov. 28, 2016]. 

[37] R. Johnson, J. Hoeller, K. Donald, C. Shampaleanu, R. Harrop et al., 

“Spring Framework Reference Documentation,” 2016. [Online]. 
Available: http://docs.spring.io/spring/docs/5.0.0.M3/spring-framework-

reference/htmlsingle/ [Accessed: Nov. 28, 2016]. 

[38] TIOBE, “TIOBE Programming Community Index Definition.” [Online]. 
Available: http://www.tiobe.com/tiobe-index/programming-languages-

definition/ [Accessed: Nov. 28, 2016]. 

 
Ruslan Batdalov received the Specialist degree in 

Applied Mathematics and Informatics from Kazan 

State University, Russia, in 2003. 
He is a second-year Master student and Research 

Assistant at the Department of Applied Computer 

Science, Riga Technical University. Previously, he 
worked as a Business Analyst, Systems Analyst, 

Activity-Based Costing Specialist. His current research 

interests include programming languages, their 
capabilities, structure and design. 

He has been the ACM member since March 2010. 

E-mail: Ruslan.Batdalov@edu.rtu.lv 
 

Oksana Ņikiforova received the Doctoral degree in 

Information Technologies (system analysis, modelling 
and design) from Riga Technical University, Latvia, in 

2001.  

She is a Professor at the Department of Applied 
Computer Science, Riga Technical University. Her 

current research interests include object-oriented 

system analysis, design and modelling, especially the 
issues in model driven software development.  

E-mail: oksana.nikiforova@rtu.lv 

 
Adrian Giurca received the Doctoral degree in 

Computer Science (Artificial Intelligence) from the 

University of Bucharest, Romania in 2004.  
He is a Research Associate of Brandenburgische 

Technische Universität Cottbus-Senftenberg. His current 

research interests include methods and applications for 
information systems of the next generation, especially 

reasoning in social media/software and reasoning in the 

Web and Semantic Web. 
E-mail: giurca@b-tu.de 

https://doi.org/10.1145/2737924.2738008
https://doi.org/10.1002/cae.20294
https://doi.org/10.1109/ICPCI.2012.6486287
https://doi.org/10.1007/978-3-642-13550-7_16
https://doi.org/10.1109/csmr-wcre.2014.6747188
https://doi.org/10.1109/icist.2014.6920368

