
Applied Computer Systems doi: 10.1515/acss-2016-0001

___ 2016/19

5
©2016 Sandro Bolanos, Rubén González Crespo, Jordán Pascual Espada, Vicente García-Díaz and Janis Osis. This is an open access article licensed

under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Softwareland Chronicles: A Software Development

Meta-Process Proposal

Sandro Bolanos1, Rubén González Crespo2, Jordán Pascual Espada3, Vicente García-Díaz4, Janis Osis5

1 Distrital University F.J.C., Colombia, 2 Universidad Internacional de La Rioja, Spain,
3, 4 University of Oviedo, Spain, 5 Riga Technical University, Latvia

Abstract – This paper presents the software development meta-

process (SD-MP) as a proposal to set up software projects.

Within this proposal we offer conceptual elements that help solve

the war of methodologies and processes in favor of an integrating

viewpoint, where the main flaws associated with conventional

and agile approaches are removed. Our newly developed

software platform to support the meta-process is also presented

together with three case studies involving projects currently in

progress, where the framework proposed in SD-MP has been

applied.

Keywords – Software development meta-process, software

process-and-methodology modeling language.

I. INTRODUCTION

Methodology-and-software development processes have

been proposed for a long time. The list of such processes is

rather long; however, still more proposals appear with the aim

of offering the best strategies when facing a software project

[1]. In this paper, we first state the problem as: “softwareland

chronicles” and “the emperors’ new clothes”. Subsequently,

we put the solution into context by setting up three theses that

lead to the software development meta-process proposal, its

conceptual framework, and its modeling language. Finally, we

present the results of three projects currently in progress where

the metaprocess (SD-MP) is being implemented. Some future

research is suggested together with main conclusions from the

present research.

II. PROBLEM STATEMENT

A. Softwareland Chronicles

Once upon a time, in the realm of intellect, where the binary

language prevailed, there was a primary species called

programs. This species lived according to simple algorithms,

undertaking basic tasks like: displaying messages like “Hello

World”, doing sums, jumping, among other simple activities.

After a K-order time (Kilo-time) interval, came to the realm a

new order called Software Engineering [2]. This order came

into the realm to install and develop new ways of thinking and

organising ideas.

The following narration is not intended to be a detailed

description of the story of softwareland, but it does mention

the most relevant events of such a story.

1. The Lineage of Processes

As the software order emerged, also did the Development

Process lineage, and so the first trend was recognised, namely

Code and Fix [3]. This trend promised programs would be

better; it was a simple order [4], and apparently an

advantageous order, but there was a lot of failure and so this

emerging society seemed to have a bleak future. Afterwards

the great Waterfall came [5], which would establish a formal

body of activities that, in time, would become disciplines. The

great hope was the development of quality programs (i.e.

software development).

Most of the teaching heritage from Waterfall would focus

on documenting the story how software was being created,

since, apart from other benefits, doing so favored software

evolution [5]. The chronicle writer Standish Group [6] would

report a great deal of victories associated with this trend, but

also many defeats connected to the way software was

conceived. It was not long before a phenomenon called

“Software Crisis” appeared [7]; this phenomenon would cause

the successive defeats of the softwareland order. Thus, other

trends appeared, such as the well-known Spiral Process [8],

whose objectives would focus on risk management as an

inherent phenomenon in software projects. Another trend

encouraged by the V Process [9] appeared; in this case the

focus was to confront software development with testing in all

stages, which would allow for a better conception of software.

Of course other models can be listed, e.g. prototypes,

incremental, evolutionary, etc.

The appearance of the great CMM [10] accompanied by its

entourage, namely TSP and PSP, was undoubtedly a

milestone. The prestigious model (CMM) would promise

better quality in terms of maturity; continuous improvement

was one of its slogans. CMM created a stratified system that

would limit or permit the development of software.

The last remarkable process milestone might be represented

by the courageous RUP [11], which came to rescue processes

empowered by its UML language widely recognized ever

since [12]. As dissatisfaction was growing, it seemed that the

lineage of processes would continue forever, although

problems did not cease to appear [13].

2. The Lineage of Agile Methodologies

In the time of processes, there was a dissident trend that did

not accept the fact of having so much failure when conducting

software projects; especially when such projects had trusted

these processes to achieve quality. Thus, a synthetic manifesto

DE GRUYTER

OPEN

Applied Computer Systems

 ___ 2016/19

6

was put forward, where the followers of this dissident trend

suggested why the solutions to software problems pertained to

agile methodologies. The most widely recognised trend within

this new order was eXtreme Programming, also known as XP

[14]. Some of the best-known proposals were: planning

games, small liberations, metaphor, simple design, and some

other not mentioned in order to keep the story short. Other

leading trends emerged, such as Scrum [15], with its popular

development springs, which were founded on a backlog that

allowed having visible software results in periods of time no

longer than 30 days.

3. The Lineage of Open-Source

This trend focuses on visible software development for a

community that is interested in working according to the

bazaar metaphor [16]. This proposal is as important as the

others and it gathers a great deal of population in

softwareland.

4. The War between Processes and Methodologies

War was declared [17]. Battle lines were then drawn;

hostility broke out among the different armies of the

development community in softwareland [18]. XP, a visible

leader of the methodologies lineage, is said to be harmful for

the development of reliable software [19], and so its

leadership has become questionable [20]; some opponents

claim that “waterfall has not died” [21]. There is a court case

against XP [22]; the manifesto is said to be cynical [23] and so

a contra-manifesto has been issued.

Short afterwards there was a counter-attack; agile

methodologies attacked processes by claiming that processes

were fictional [24] and their only objective was to maintain

their status quo by being normative in utopian development

situations [25]; cheerful RUP was regarded as a dinosaur [26],

and the lifecycle of classical development was attacked with

claims like “lifecycle is harmful” [27].

B. The Emperor’s New Clothes

“In those times, the clothes being made had the quality of

becoming invisible for those who were not up to the tasks or

for the foolish”, Hans Christian Andersen [28].

The main strategy to approach a software project lies in

adopting a software process or methodology. Out of the varied

wardrobe of methodologies and processes, we are forced to

choose some of these strategies to end up accepting that the

chosen strategy is the one that best suits our needs, otherwise

“we take the risk of being foolish or not being up to the task”.

III. THE SOLUTION

Processes and methodologies are immersed in a discussion

about which of the approaches is right; we may say that while

processes have focused on solving the “know how” of the

problem, methodologies have focused on the “know what”,

“know who”, and “know when”; we will refer to this situation

as H&W problems.

Each approach has put its opponents’ viewpoint in the

background. While processes highlight the activities and the

way they articulate with one another [29], methodologies look

at practices, values and principles [30]. Both methodology and

processes, hereafter referred to as M⊕P, have attempted to

offer clothes that overlay software with quality.

A. Theses

We consider the following theses:

 M⊕P is not part of the solution; it is part of the

problem instead.

 M⊕P should be modelled using a language, “it

should speak the same language” and must be

observed from a superior category.

 M⊕P is a new species.

B. Flatland

M⊕P lives in Flatland [31]. Methodologies and processes

are orthogonal theories. Conventional processes are typically

associated to large-scale project development, whereas agile

methodologies are associated to small projects [32]. However,

there are some approaches [33] that resemble different

mixtures.

Similar to Flatland (by Abbot [31]), here we find circles

like CMMI, ISO, SPICE and other shapes with a normative

character whose fundamental doctrine resides in the following

motto: “listen to your configuration”. Also remarkable within

Flatland, we find polygons like Rup, WaterFall, XP, and

Scrum among others; even some Open-Source irregular

shapes.

C. Metaization

The principle of Metaization [34] is used in different areas;

for example, the famous Hilbert’s program [35]. This system

was proposed to be called meta-mathematics.

In order to introduce this concept into our discussion, we

need to recall Flatland, where it was established that any

proposal, either from methodologies or from processes,

constitutes a limited solution. This is because the solution to

the H&W problem that this kind of proposals deals with is

unable to cope with the questionings about M⊕P, in other

words, the clothes produced do not represent the solution on

the whole, as stated in Thesis 1. The more aware we become

(within our Software Engineering discipline) that studying

M⊕P is advantageous to software development, the higher the

quality of software will be; that is, studying M⊕P to conduct

a particular software project is as necessary as using

requirements engineering, architecture, design,

implementation or testing. Before considering these aspects in

detail, let us recall Flatland once again. The proposal is then to

add up one more dimension; this dimension permits describing

M⊕P since it creates a higher level, which is achieved by

applying metaization.

From this extra-dimension, hereafter referred to as meta!, it

is possible to see flat shapes that, just like Flatland, will

represent either methodologies or processes. It is clear that

from the meta! dimension it is possible to understand, and of

course to question M⊕P, even to propose something. What

we have is a wide variety of methodology proposals and

software processes that have been very useful, but they cannot

continue to appear out of spontaneous generation [36] “it is

Applied Computer Systems

 ___ 2016/19

7

unknown as how they came into existence, except for the

people who create them”. We cannot rely on this with no

questioning about how suitable these principles are for a

particular project [37].

D. Meta-Process

A meta-process has been observed from the process

evolution perspective. In this approach, there is distinction

between the real-world process, which gathers the necessary

activities to make a software product by including people, and

the process model, which reflects the real-world process [38].

Evolution addresses the establishment of the steps that affect

the process in the real world as well as the process model.

Moreover, evolution keeps consistency in the possible

changes. Models, such as CMMI [39] and SPICE [40], are

regarded as meta-processes; although these models focus on

real-world process evolution rather than on process model

evolution, whose subject of study lies in the process cycle,

and/or on the methodologies.

We can also resort to the concept of prescriptive and

descriptive model [41]. As long as we establish the necessary

steps for the real-world process to evolve, we may say that we

are configuring a prescriptive model, in other words, proposals

like CMMI are prescriptive models of the meta-process,

hence, its normative character. On the other hand, if we

establish a model of the steps that were taken in the real world,

we are referring to a descriptive model [42].

The meta-process must be an umbrella concept that defines

the reasons (why) for the “know how”, “know where”, “know

who”, “know when”, in other words, it defines cause-effect

[41]. This type of holistic question hereafter will be referred to

as W(H&W), and it arises as a fundamental trait to build meta-

process instances [43].

E. Software Development Meta-process

From the meta-process viewpoint, conceptual tool must be

provided for the genesis of M⊕P, that is, W(H&W) must be

answered; this will constitute the support for Thesis 1. To

establish the software development meta-process, hereafter

SD-MP, we propose a framework founded on three questions

as follows:

a Why is it possible to select a methodology or a software

process?

b Why is it necessary to build a methodology or a software

process?

c Why is it necessary to create new ways of development

within and beyond the concepts of methodology or

software process?

The answers to these questions configure SD-MP as

follows:

a Because there are M⊕P that can be adjustable to a

particular project, the solution would correspond to a

management process.

b Because there is no M⊕P that adjusts to the software

product; the solution would correspond to a structuring

process.

c Because, within M⊕P there is no concept that adjusts to

the singularity of the software project, the solution

corresponds to an innovation process.

1. Management

This idea is based on selecting and/or adapting the

appropriate M⊕P for a particular software project [44]. In

order to select or adapt M⊕P, it is necessary to lean on

strategy definition, organisation, production, and

documentation processes. Strategy definition consists in

determining whether a methodology or a process is to be

adopted [45], or else if a combination of the two approaches is

adopted. As a consequence of the management process, the

M⊕P-manager role is established. The knowledge of this role

focuses on the acknowledgement and execution of an

adjustable M⊕P (see Table I).

2. Structuring

This idea is based on the suitable construction of M⊕P for

a particular project. In order to build M⊕P, the following is

necessary: defining the architecture that should be adopted

according to the methodology or process. Additionally, M⊕P

mechanism configuration and/or guideline configuration must

be carried out, either from the perspective of the activity

(process) [46] or from the perspective of the value

(methodology) [47]. As a consequence of the structuring

process, the M⊕P architect’s role is established, whose

knowledge addresses the assembly and construction of an

M⊕P that suits the project (see Table I).

3. Innovation

This idea is based on the creation of new ways of

development within and beyond M⊕P. The creation of M⊕P

requires establishing communication mechanisms [48] within

M⊕P and promoting knowledge management [49] in its two

dimensions, namely tacit and explicit knowledge [50]. As a

consequence of innovation, the M⊕P innovator’s role is

established; whose knowledge addresses the creation of new

ways of M⊕P (see Table I).

TABLE I

PROCESSES AND ROLES

F. The Meta-Process as a Layered Architecture

The meta-process is configured in a layered architecture

[51] and its position is on the top layer. The software

development meta-process constitutes the ontological instance

[52] of the meta-process. Methodologies and processes are

Applied Computer Systems

 ___ 2016/19

8

located at intermediate layers, and methodologies such as XP,

Scrum, etc. constitute the ontological instance of a

methodology. Processes like Waterfall, RUP, etc. constitute

the ontological instance of a process. Methodologies and

processes are linguistic instances [52] of the meta-process;

likewise, XP, Scrum, Rup, Waterfall, etc. represent linguistic

instances of SD-MP. Customising M⊕P, creating new M⊕P

concepts, and going beyond M⊕P represent ontological

instances of M⊕P and linguistic instances of SD-MP. In these

instances, we find most of the software development research

from the perspective of M⊕P and beyond. This is not about

reinventing the wheel [53] once and again, these ideas are

about suggesting effective solutions over and beyond M⊕P.

These ideas should constitute a silver bullet in software

engineering.

G. Modelling Language for M⊕P from the Meta-Process

Process Modelling Languages (PMLs) [38] have been

proposed by the process-study community, giving rise to a

considerable number of them. These languages are based on

activities, roles and artifacts; likewise, process-centered

environments (PSEEs) [38] have also been developed. This

phenomenon has not spread with the same intensity on

methodologies. The problems associated with development

still place a strong emphasis on solving the “know how”.

We propose a modelling language for M⊕P from the

perspective of software development meta-process, hereafter

referred to as M⊕P Modelling Language (M⊕P-ML). This

language will provide support to Thesis 2. The language is

structured over an object-layer and a meta-layer; within the

proposal, the language considers the PML approach, but

additionally includes fundamental elements to model

methodologies.

The M⊕P modelling language is intended to facilitate the

use of, construction of, and creation on M⊕P. The vocabulary

involved configures the most representative elements of M⊕P

as well as the possibility of creating new concepts based on

language categories and also on their meta-vocabulary,

derived from the root that help maintain the structure and the

philosophy of the language. This language is equipped with a

type of graphical notation similar to UML [12] and also to

BPMN. The specific notation we propose might be seen in the

Coloso [54] environment. It is out of the scope of the present

paper to go into details of the language and its notation.

H. M⊕P-ML as a Layered Architecture

Regarding PMLs, M⊕P-ML is placed on an upper layer

since, from its target layer, M⊕P-ML permits specifying a

PML. M⊕P-ML proposes its own object language (M⊕P-

OML) and extends it to a PML, since M⊕P-ML suggests

modelling not only processes but also methodologies, that is,

modelling both the “know how” as well as the “know who”,

“where”, “when”, etc.

PMLs such as SPEM are particular instances of the

language for M⊕P on its meta-layer (M⊕P-MM). The

fundamental contribution of M⊕P-ML lies in estimating

concepts, not only with regard to the processes but also to the

methodologies, which permits a more complete type of

modelling. Both process and methodology are considered to

be types of strategy.

I. M⊕P Is a New Species

Coexistence between processes and methodologies is not an

easy matter. The emphasis associated with one or another

strategy makes them eclipse one another. However, it is

important to know when to switch strategies, that is, when

considering the procedure to solve the problem, it is essential

that the “know how” stands out; conversely, whenever it is

required to know “who”, “where” or “when”, methodology

should stand out. With the software development meta-process

and the proposed language, the idea is to exploit the

advantages of processes as well as of methodologies, and so

facilitate their modeling, their use and their evolution. We

consider that if it involves human aspects and automatic

aspects, M⊕P might be considered new species of

processware, supporting Thesis 3.

IV. COLOSO PLATFORM

The SD-MP Coloso platform is the type of software

developed to support the SD-MP meta-process. This software

can be downloaded from www.colosoft.com.co. Here, the

meta-process framework is offered together with its

viewpoints, which are implemented to support M⊕P

management, M⊕P structuring, and M⊕P innovation.

V. RESULT

The following section presents the results of three

development projects currently in progress. These projects

implement the meta-process. The projects have been proposed

under the following conditions:

a Project A proposes an information system about

Colombian biodiversity. Project B proposes the creation

of an information system for the Health Department of

the Capital District in Bogota, Colombia, addressing the

problem of animal control. Project C proposes the

development of an entrepreneurial portal.

b All projects are subject to an 8-month schedule and a

6-member development team.

c The development platforms can be freely chosen.

It is worth mentioning that the meta-process engineer

working on the three projects is the same person; the idea is to

simultaneously evaluate SD-MP execution and measure the

different levels of management, construction and creation for

M⊕P. After three months, projects are underway and we have

gathered the following evidence:

A. Management Process

TABLE II

STRATEGIES

Applied Computer Systems

 ___ 2016/19

9

1. Strategy Definition

In the case of project A, the RUP process was chosen. In

project B the choice was OpenUP, and project C used Scrum

(see Table II).

Findings associated with this activity: leaders were clear

about the need to use a strategy, but they were unclear about

the process and methodology trends. Project A chose RUP

since it was demanded by the organisation; Project B chose

OpenUp due to the team’s knowledge on projects running over

Eclipse platform; while Project C chose Scrum, due to the

team’s intention to experiment with agile methodologies.

2. Organisation

The SD-MP meta-process proposes a division of roles into

two categories, namely solution-domain roles and problem-

domain roles. In the case of the meta-process, the bedrock is

human resources; a clear definition of the participants and

their functions constitutes a fundamental trait that must be

established at the beginning of a project.

Defined roles were influenced by the character of the

process or methodology, as shown in Table III.

TABLE III

ROLES

The meta-process engineer insisted on the importance of

defining problem-domain roles and solution-domain roles,

arguing that, regardless of the M⊕P chosen, there must be

responsibilities for the two fundamental actors, that is, who are

to have the problem and who are to offer the solution.

3. Production Planning

The SD-MP meta-process considers production as the role-

product association. The main purpose is to identify and

control M⊕P through products generated by each role. This

viewpoint can be interpreted from a higher level and also at a

detailed level. In this particular case, the higher level

perspective is estimated, that is, the macro-products that

configure the links leading to the final product. Each M⊕P

can also be interpreted from the detailed production viewpoint,

where the most specific products are linked to the roles that

created them.

There was consensus about moving forward with the

functionalities of the entrepreneurial portal on a weekly basis,

milestones were established and it was also agreed to move

forward with milestones as goals were attained. This activity

involved the participation of the meta-process engineer, the

scrum master and the product owner (Table IV).

TABLE IV

PRODUCTS

Findings associated with this activity: the roles involved

were clear about the final product. Once requirements were

established, while looking for the links leading to the final

product, the meta-process engineer highlighted the importance

of defining higher-level sub-products to help visualise an

anticipated configuration of the final product.

4. Document Planning

In SD-MP, it is possible to support the lifecycle of a

software project through documentation. There are two types

of documents: the fundamental document, which consists of

all source codes and data that run directly on machines; and

support documents, which serve to extend the semantics of

fundamental documents. The double nature and importance of

documentation warns about the relevance of observing the two

branches of the same project that should be kept consistent

throughout the project’s lifecycle (see Table IV).

TABLE IV

DOCUMENTS

Findings associated with this activity: managers were clear

about the importance of documents. The meta-process

engineer stressed the concept of documentation for M⊕P as a

mechanism to support and contribute to the evolution of

M⊕P. In the case of RUP and OpenUP, it was clear and

straightforward that UML should be used due to the

background links between the two proposals, namely

“language-process”. In the case of Scrum, the integration of

UML was not as straightforward, but it was proposed as an

essential element of design.

B. Structuring Process

1. Architecture Realization

The SD-MP meta-process identified that the M⊕P

architecture involved two concepts, namely the construction

and/or adaptation of the conceptual blocks that conform

M⊕P. This is performed from two perspectives, namely from

the model that establishes M⊕P and from its corresponding

Applied Computer Systems

 ___ 2016/19

10

execution. The first architectural source lies in the diagram or

scheme used by each M⊕P to show the articulation between

phases, activities, tasks, instructions and practices.

For the purposes of our studies this architecture includes

only the development disciplines; although the support

disciplines are carried out, they are not included in our

research schedule. There is particular emphasis on the

relevance of understanding the philosophy of the process, its

iterations, and the impact that each phase has on the different

disciplines after each iteration. More specific details that

pertain to the process begin to appear. In this case, it was not

necessary to build the model since the model itself was

proposed by RUP. However, it was essential to adapt the

model specifically to the support disciplines. The

recommendations of the meta-process emphasise the

importance of being coherent regarding the model and its

execution, recording the adaptations made throughout the

process on the model’s architecture.

The architecture proposed in the OpenUP defines the

following: increments on a daily basis, weekly iterations and

the life cycle of the project. The assembly between process

and methodology is highlighted due to the influence of RUP

and the agile methodologies (Scrum and XP) on OpenUP. In

this case, it was not necessary to build the model since the

model itself had already been proposed by OpenUP. The

recommendations of SD-MP were also emphasised regarding

the importance of being coherent between the model and its

execution and also the importance of recording the adaptations

made throughout the process on the model’s architecture.

The architecture proposed for the Scrum project defines the

way Sprints must be carried out. In this particular case, it was

not necessary to build the model since it had already been

proposed by Scrum. The recommendations of SD-MP were

also emphasised regarding the importance of preserving

coherence between the model and its execution. Unlike RUP

and OpenUP, Sprint’s architecture is far simpler to follow and

does not require any major adaptations.

Findings associated with this activity: Defining the

architecture of the different projects represented significant

progress and also helped to clarify the spirit of each M⊕P. In

the case of RUP, the architecture strongly suggested the need

to have a more specialised team capable of dealing with the

process model in its true dimension. In the case of OpenUP,

the situation was more manageable. The feeling within the

OpenUP team reflected that team members were able to cope

with their own M⊕P. Scrum team members reflected a light,

understandable, and easy-to-follow structure.

2. Configuration of Mechanisms and Guidelines

In the SD-MP meta-process, configuring the mechanisms

and guidelines allows detailing the building blocks that

constitute M⊕P. For processes, the following can be

distinguished: phases, activities, tasks and instructions. For

methodologies, the following can be distinguished: practices,

values, principles, risks, restrictions, limitations, and

methodology’s own methods among others. The value of

identifying the different shades of M⊕P from its

configuration elements lies in the precise definition of the

project-driving philosophy.

In the case of RUP, phases, activities, and tasks are

distinguished. From the perspective of SD-MP, these

characteristics constitute a process model with a high degree

of complexity, since it is necessary to understand the way in

which these mechanisms articulate with one another. Some of

the major difficulties of RUP are the comprehension of the

disciplines involved and the simultaneous execution of the

phases; moreover, it is difficult to involve iterations. It is clear

that the use of more mechanisms implies more elements. We

stress the importance of having a clear purpose for each

mechanism so that the process reinforces the development and

does not become an obstacle when trying to find fluency and

go forward with the project. In the case of OpenUP, the

following are distinguished: phases, activities and tasks. These

aspects are affected by risk management and value

management; here we assumed daily increments. Both

mechanisms and guidelines were perceived. Additionally, a

fusion between process and methodology was made clear. The

complexity of the process is alleviated by using methods such

as the personal approach to daily work. From the perspective

of SD-MP, emphasis is placed on how important it is to

acknowledge the value of maintaining the same mechanisms

and guidelines within the same model. In the case of Scrum,

tasks are distinguished as a fundamental mechanism.

Additionally, there was no doubt about the use of a set of

guidelines that were represented by practice evidence such as:

early releases, daily meetings, tracking of a sprint whose input

was the product backlog, among other methods configuring

the nature of the methodology. From the perspective of SD-

MP, the following aspects can be highlighted: the value of

applying these practices, the need to control development, and

the fact that, despite facing the possibility of constantly

updating user’s requirements, this represents no obstacle to the

progress of the project (see Table VI).

TABLE VI

MECHANISMS AND GUIDELINES

Findings associated with this activity: defining the

mechanisms and guidelines for each of the M⊕P permits

estimating the degree of complexity of processes and

methodologies as well as the degree of commitment that

should be taken when facing each concept, leading to an

appropriate understanding of the process or methodology.

3. Artifact-Map Making

In the SD-MP meta-process, establishing the artifact map

means creating a linking thread for M⊕P through the

Applied Computer Systems

 ___ 2016/19

11

artifacts, representing visible milestones. The conceptual

continuity achieved by using artifact traceability eases the

execution and evolution of M⊕P.

These artifacts were easily identifiable (see Table VII).

TABLE VII

ARTIFACTS

Findings associated with this activity: defining the artifacts

as the route map allowed identifying the traits of each M⊕P.

In the case of RUP and OpenUP, the prescriptive character of

processes was noticeable, yet this was more evident in RUP.

In the Scrum project, the adaptive character was more evident;

since by the third month, the path that the proposed releases

should follow had changed at least twice. There was a higher

degree of customer satisfaction in the Scrum project due to the

amount of progress materialized in the product; however, RUP

and OpenUP appeared to have been more robust due to their

evident levels of planning.

4. Contribution

The SD-MP meta-process suggests representing the

contribution as the input−output relation between strategies,

mechanism, and guidelines; which permits valuing the

importance of each functional element of M⊕P.

The contribution of the process, as well as of the activities

and tasks, was easily identifiable in the RUP project. Such a

contribution is fundamentally represented in the

documentation. This can be seen in the product versions

obtained so far (see Table VIII.)

TABLE VIII

INPUT-(STRATEGY/MECHANISM/GUIDELINES)-OUTPUT

Findings associated with this activity: each M⊕P in each

project justifies its conceptual framework with its

contribution; however, the RUP project is the one whose

evidence is more noticeable in terms of project execution, that

is, the input-output relation for this project is enriched with

more artifacts. However, the project that instills more

confidence in the customers is Scrum due to its direct

requirement-product relation. In the OpenUP project, there is a

balanced relation between documentation and software.

C. Innovation Process

1. Communication

Communication is the fundamental pillar of innovation. SD-

MP states the need to establish various communication

methods that ease knowledge socialisation and exchange,

making it flow throughout M⊕P.

The following methods were proposed for communication

in the RUP project: interviews with users at the beginning of

the project in order to establish the requirements; meetings

with the leader and the project team on a fortnightly basis. In

the case of the OpenUP project, communication methods were

as follows: interviews with users every week, and meetings

with the project manager and the development team. The

communication methods for the Scrum project were the

following: interviews with the stakeholders at least every two

days, a weekly meeting with the product owner, daily

meetings with the developers, and weekly meetings involving

the Scrum master, the manager and the development team (see

Table IX).
TABLE IX

COMMUNICATION

Findings associated with this activity: making

communication methods explicit favours interaction within

projects. In the Scrum project, the strong tendency towards

using different interaction and communication mechanisms is

evident, which strengthens the bonds between team members.

In fact, a higher degree of collaboration was easily observable

in the Scrum project, which could be explained by the

dynamic nature that pertained to this agile methodology. In the

cases of RUP and OpenUP, the most interaction-engaging and

bond-strengthening activities were requirement elicitation (in

the second week of the first month) and architectural design

(in the second month). Subsequently, each of the teams

focused on their own activities; OpenUP, however, switched a

bit more between activities like interviews and meetings.

2. Problem Identification

In the SD-MP meta-process, the determination of the

problems arising when modeling and executing M⊕P is a key

aspect to the improvement of the M⊕P per se. Problem

identification draws its attention to determining possible

dissatisfaction when using M⊕P and also attempts to

overcome these inconveniences by adjusting to the execution

expected by the M⊕P, or else adjusting the framework of

M⊕P.

It was easily observed that the RUP project framework

could not be carried out as rigorously as proposed due to the

limitations imposed mainly by the participant roles. Difficulty

in adopting and following the RUP conceptual framework was

also observed, including the fact that the process was imposed

Applied Computer Systems

 ___ 2016/19

12

by the organisation. In the OpenUP project, the greatest

difficulty lies in understanding the coexistence between

process and methodology as well as the implications of the

different strategies. In the Scrum project, one of the greatest

difficulties arises when integrating UML with a methodology

that does not incorporate UML explicitly. Putting together

diagrams such as use cases and the user-stories method was

first seen as cumbersome [56], instead of thinking about this

situation as complementary (see Table X).

Findings associated with this activity: when starting each

project, each of the teams became familiar with their

corresponding process or methodology.

TABLE X

PROBLEM IDENTIFICATION

Although leaders had some background on the chosen

M⊕P, the sensitising process caused some complications.

When carrying out the three projects, it was necessary to

emphasise the use and tracking of the framework for each

M⊕P. In the RUP project, it was necessary to make some

adjustments that overloaded the functions of some of the roles.

In the case of OpenUP, some releases were underestimated

and so had to be reprogrammed, which took more time than

expected. In the case of Scrum, it was necessary to issue a

warning about user control in order to avoid underestimating

or overestimating particular requests.

3. Improvement

Once the problems associated with an M⊕P have been

determined, together with their corresponding

recommendations, the SD-MP meta-process goes beyond by

proposing improvements. Such improvements consist in

revising M⊕P in order to identify new ways to strengthen it.

This activity requires a previous assessment based on the

evidence provided in the short, mid, and long run.

The main evaluation criteria proposed for the three projects

are the supervision of critical factors for the execution of the

process or methodology together with the mechanisms that

facilitate the strategy architecture update. Improvement may

take place in three phases according to the execution of M⊕P,

namely pre-, in- or post-M⊕P. The pre-M⊕P improvement

represents the type of M⊕P reinforcement that is based on

evidence and knowledge. This improvement can be directly

extracted from the framework proposed by the M⊕P. The in-

M⊕P improvement is the type of reinforcement of M⊕P that

is mainly based on the evidence obtained throughout the

M⊕P execution process. Finally, the post-M⊕P improvement

corresponds to the M⊕P reinforcement that is based on the

results from the full execution of M⊕P lifecycle.

In the RUP project, the recommendation is to improve

communication channels. In the OpenUP project, it has been

suggested that the proposed architecture should not be

neglected in an attempt to have early releases. In the Scrum

project it has been recommended that more UML artifacts be

included to strengthen documentation (see Table XI).

TABLE XI

IMPROVEMENT

Findings associated with this activity: the improvement

perspective has allowed for proper evaluation and

reinforcement of each M⊕P, aiming for evolution. In-M⊕P

improvement is currently taking place and, at the end of each

project, post-M⊕P improvement is proposed.

4. Knowledge Management

In the SD-MP meta-process, knowledge management is one

of the most important trends to be adopted in terms of

software engineering; considering that software is knowledge

[55]. These processes determine the possible changes that take

place between tacit and explicit knowledge.

Each team has been sensitised to the knowledge sharing

process within each project and such a process has been

reinforced through the aforementioned communication

methods. Emphasis has been placed on the relevance of

personal work together with permanent interaction to

strengthen cooperative bonds and experience exchange.

Findings associated with this activity: From the meetings

held by the teams involved in the three projects it has been

observed that there is an intention to share experiences

supported by the knowledge of the job carried out. The

concept of knowledge management and its corresponding

importance is still rudimentary within the teams, but there is a

growing interest in using the strategies proposed.

D. Observations on the SD-MP Meta-Process

By gathering all concepts involved in the SD-MP

metaprocess, namely management, structuring and innovation,

and also taking the three projects as reference samples, we

conclude that, for the current experiment, the RUP project has

a weight of 45 %, the OpenUP project has a weight of 33 %,

and the Scrum project has a weight of 22 %. In addition, in the

three projects, the management process was denser weighting

60 %. The structuring process weighted 30 % and innovation

occurred with a weight of 10 %.

This statistical trend occurs due to the M⊕Ps used. Each of

them configures a well-defined framework, which is

fundamentally tracked within each of the projects. The degree

of construction within the structure corresponds to some

adaptations; such adaptations were mainly necessary in the

RUP project.

Although the projects have only been assessed up to a third

of their complete time span, there are significant findings

regarding the framework proposed by the SD-MP meta-

process. Additionally, there has been a positive impact on the

execution of M⊕P due to the recommendations proposed by

SD-MP as each project is running. The significant trait that is

Applied Computer Systems

 ___ 2016/19

13

proposed by the SD-MP meta-process is aimed at the

configuration of framework concepts that allow for

progressive evaluation of the M⊕Ps without interrupting their

execution.

VI. FUTURE RESEARCH

Our goal is to carry on revising M⊕P proposals, applied to

processes currently in progress from the perspective of the

SDMP meta-process where a greater impact on structure and

innovation is required, thus achieving a more significant

sample to obtain more conclusive results that permit providing

feedback on the meta-process proposal presented.

For the present proposal, we have developed a tool called

Coloso, which integrates languages such as Archimate and

UML on the basis of its formulization [57]. These integrated

languages are handled from M⊕P-ML, which allows

modeling meta-process ideas. The idea is to integrate so that it

is possible to combine the proposals and further strengthen the

software development methodology and process.

VII. CONCLUSION

M⊕P is part of a problem that needs to be solved and must

not be considered simply as an ad-hoc solution. This is what

gives birth to M⊕P roles like manager, architect and

innovator, whose functions are associated with management,

structuring or innovation, respectively. These concepts

configure the meta-process proposed in this study.

The models approach represents a powerful paradigm to

software development. Proposals such as MDD permit seeing

the impact of modelling. When modelling is implemented

together with a language, it becomes more powerful. The

software development meta-process proposal and the M⊕P

modeling language address these two approaches.

The novelty value in M⊕P, from the perspective of the

meta-process, is the strategic fusion of the two paths, namely

methodology/process, where the advantages of both are

exploited; the idea is to conveniently carry out either the

methodology or the process as needed.

The SD-MP meta-process proposed suggests a light

conceptual framework from which M⊕P is conceived as the

object of study. This facilitates not only the revision of a

particular M⊕P, but also suggests a framework for the

construction of M⊕P that allows it to be adjusted to a

particular project.

REFERENCES

[1] J. Osis and E. Asnina. “Is Modeling a Treatment for the Weakness of
Software Engineering?” in Model-Driven Domain Analysis and Software

Development: Architectures and Functions. IGI Global, New York, USA,
pp. 1–14, 2011. http://dx.doi.org/10.4018/978-1-61692-874-2.ch001

[2] P. Naur and B. Randell, Software engineering: Report of a conference

sponsored by the NATO science committee, Scientific Affairs Division,
NATO, Garmisch, Germany, November, 1968.

[3] S. McConnell, Rapid Development, Microsoft Press, 1996.
[4] J. Maeda, Las leyes de la simplicidad, Gedisa, 2008.

[5] R. W. Winston, Managing the development of large software systems:

IEEE WESCON, July 22–26, 2002, Los Ángeles, USA, 1970.
[6] T. Clancy, “The Extreme Chaos,” Standish Group International Inc.,

2012.

[7] R. L. Glass, “The Standish Report: does it really describe a software

crisis?” Communications of the ACM, vol. 49, no. 8 pp. 15–15, 2006.

http://dx.doi.org/10.1145/1145287.1145301
[8] B. Boehm, “A spiral model of software development and enhancement,”

Computer, vol. 21, no. 5, pp. 61–72, 1988. http://dx.doi.org/10.1109/2.59
[9] K. Forsberg and H. Mooz, “The relationship of system engineering to

the project cycle,” National Council On System Engineering, vol. 1,

no. 1, pp. 57–65, 1981. http://dx.doi.org/10.1002/j.2334-
5837.1991.tb01484.x

[10] M. C. Paulk, C. V. Weber, B. Curtis and M. B. Chrissis, The Capability
Maturity Model: Guidelines for Improving the Software Process,

Addison Wesley, 1994.

[11] P. B. Kruchten, The Rational Unified Process (An Introduction),
Addison Wesley, 1999.

[12] U. Donins, J. Osis, A. Slihte, E. Asnina and B. Gulbis. Towards the
Refinement of Topological Class Diagram as a Platform Independent

Model: ENASE Model-Driven Architecture and Modeling-Driven

Software Development, Portugal, pp. 79–88, 2011.
[13] J. Osis, E. Asnina and A. Grave, “Computation Independent

Representation of the Problem Domain in MDA,” e-Informatica
Software Engineering Journal, vol. 2, no. 1, pp. 29–46, 2008.

[14] K. Schwaber, Scrum Development Process: OOPSLA95 Business Object

Design and Implementation Workshop, New York, USA. Springer,
vol. 6, no. 4, pp. 170–175, 1995.

[15] E. S. Raymond, The Cathedral and the Bazaar, O’Reilly, 1999
[16] R. L. Glass, “Agile versus traditional: Make love not war,” Cutter IT

Journal, vol. 14, no. 2, pp. 12–18, 2001.

[17] M. McCormick, “Technical opinion: Programming extremism,”
Communications of the ACM, vol. 44, no. 6, pp. 109–119, 2001.

http://dx.doi.org/10.1145/376134.376181
[18] AVOCA-GmbH, “Extreme Programming”, 2012. [Online]. Available:

www.avocallc.com/downloads/

[19] H. Saiedian, “Panel: Extreme programming: helpful or harmful?”
Proceedings. International Conference on Software Engineering,

Washington, USA. IEEE Computer Society, p. 718, 2003.
http://dx.doi.org/10.1109/icse.2003.1201258

[20] S. Chatterjee, “The waterfall that won’t go away,” SIGSOFT Software

Engineering Notes, vol. 35, no. 1, pp. 9–10, 2010.
http://dx.doi.org/10.1145/1668862.1668875

[21] M. Stephens, The Case against Extreme Programming, 2012. [Online].

Available: http://www. softwarereality.com/lifecycle/xp/case_against_xp.jsp

[22] S. R. Rakitin, “Manifesto elicits cynicism,” Computer, vol. 34, pp. 4–7,

2001.
[23] J. Nandhakumar and D. E. Avison, “The fiction of methodological

development: a field study of information systems development,”
Information Technology & People, vol. 12, pp. 176–191, 1999.

http://dx.doi.org/10.1108/09593849910267224

[24] D. Truex, R. Baskerville and J. Travis, “Amethodical systems
development: the deferred meaning of systems development methods,

Accounting,” Management and Information Technologies, vol. 10,
pp. 53–79, 2000. http://dx.doi.org/10.1016/S0959-8022(99)00009-0

[25] W. Hesse, “Dinosaur meets archaeopteryx? or: Is there an alternative for

rational unified process?” Software and Systems Modeling, vol. 2,
pp. 240–247, 2003. http://dx.doi.org/10.1007/s10270-003-0033-y

[26] D. D. McCracken and M. A. Jackson, “Life cycle concept considered
harmful,” SIGSOFT Software Engineering Notes, vol. 7, no. 2, pp. 29–32,

1982. http://dx.doi.org/10.1145/1005937.1005943

[27] C. Andersen, El traje Nuevo del emperador, La galera, 2009.
[28] N. B. Ruparelia, “Software development lifecycle models,” SIGSOFT

Software Engineering Notes, vol. 35, no. 3, pp. 8–13, 2010.
http://dx.doi.org/10.1145/1764810.1764814

[29] R. Hoda, P. Kruchten, J. Noble and S. Marshall, “Agility in context,”

ACM SIGPLAN Notices, vol. 45, no. 10, pp. 74–88, 2010.
http://dx.doi.org/10.1145/1932682.1869467

[30] E. A. Abbott, Flatland: A romance of many dimensions, John Wilson
and Son, Cambridge, 1885.

[31] L. Wang, “Agility counts in developing small-size software,” IEEE

Potentials, vol. 26, no. 6, pp. 16–23, 2007.
http://dx.doi.org/10.1109/MPOT.2007.906114

[32] K. Sureshchandra and J. Shrinivasavadhani, “Moving from waterfall to
agile,” in Agile Conf., AGILE '08., Toronto, USA, IEEE, 2008, pp. 97–

101. http://dx.doi.org/10.1109/agile.2008.49

[33] T. Khne, “Matters of (meta-) modeling,” Software and Systems Modeling,
vol. 5, pp. 369–385, 2006. http://dx.doi.org/10.1007/s10270-006-0017-9

http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
http://dx.doi.org/10.1145/1145287.1145301
http://dx.doi.org/10.1109/2.59
http://dx.doi.org/10.1002/j.2334-5837.1991.tb01484.x
http://dx.doi.org/10.1002/j.2334-5837.1991.tb01484.x
http://dx.doi.org/10.1145/376134.376181
http://dx.doi.org/10.1109/icse.2003.1201258
http://dx.doi.org/10.1145/1668862.1668875
http://dx.doi.org/10.1108/09593849910267224
http://dx.doi.org/10.1016/S0959-8022(99)00009-0
http://dx.doi.org/10.1007/s10270-003-0033-y
http://dx.doi.org/10.1145/1005937.1005943
http://dx.doi.org/10.1145/1764810.1764814
http://dx.doi.org/10.1145/1932682.1869467
http://dx.doi.org/10.1109/MPOT.2007.906114
http://dx.doi.org/10.1109/agile.2008.49
http://dx.doi.org/10.1007/s10270-006-0017-9

Applied Computer Systems

 ___ 2016/19

14

[34] R. Zach, “Hilbert’s Program Then and Now”, 2015. [Online]. Available:

http://arxiv. org/abs/math/0508572

[35] J. Strick, “Darwinism and the origin of life: The role of H. C. Bastian in
the British spontaneous generation debates,” Journal of the History of

Biolog, vol. 32, no. 1, pp. 1868–1873, 1999.
http://dx.doi.org/10.1023/A:1004460408116

[36] P. Clarke and R. V. O’Connor, “The situational factors that affect the

software development process: Towards a comprehensive reference
framework,” Information and Software Technology, vol. 54, no. 5,

pp. 433–447, 2012. http://dx.doi.org/10.1016/j.infsof.2011.12.003
[37] J. C. Derniame, B. A. Kaba and D. Wastell, Software process:

principles, methodology, and technology, Springer-Verlag, 1999.

[38] E. Asnina and J. Osis, “Topological Functioning Model as a CIM-
Business Model,” in Model-Driven Domain Analysis and Software

Development: Architectures and Functions. IGI Global, New York,
USA, pp. 40–64, 2011. http://dx.doi.org/10.4018/978-1-61692-874-

2.ch003

[39] J. Sanders, “Spice: New directions in software process assessment,” in
Proc. of Quality and Productivity in Software Development Conf.,

University of Iceland, 1970.
[40] M. Suula, T. Makinen and T. Varkoi, “An approach to characterize a

software process,” in Int. Conf. on Management of Engineering &

Technology, PICMET '09. IEEE, pp. 1003–1109, 2009.
http://dx.doi.org/10.1109/picmet.2009.5262007

[41] J. E. Gibson, “Cause and effect analysis: “power tool” for total quality,”
Electrical Electronics Insulation Conference and Electrical Manufacturing

& Coil Winding Conference, EEIC/ICWA, Chicago, USA, pp. 751–753,

1993. http://dx.doi.org/10.1109/EEIC.1993.631320
[42] E. Asnina and J. Osis, “Computation Independent Models: Bridging

Problem and Solution Domains,” in ENASE Model-Driven Architecture
and Modeling Theory-Driven Development, Portugal, pp. 23–32, 2010.

[43] F. Woo, R. Mikusauskas, D. Bartlett and R. Law, “A framework for the

effective adoption of software development methodologies,” in ACMSE
Proc. of the 44th Annual Southeast Regional Conf., New York, USA,

ACM, pp. 198–203, 2006. http://dx.doi.org/10.1145/1185448.1185493
[44] E. Germain and P. N. Robillard, “Engineering-based processes and agile

methodologies for software development: a comparative case study,”

Journal of Systems and Software, vol. 75, no. 1–2, pp. 17–27, 2005.
http://dx.doi.org/10.1016/j.jss.2004.02.022

[45] F. Garca, M. Piattini, F. Ruiz, G. Canfora and C. A. Visaggio, “FMESP:

Framework for the modeling and evaluation of software processes,”

Journal of Systems Architecture, vol. 52, no. 11, pp. 627–639, 2006.

http://dx.doi.org/10.1016/j.sysarc.2006.06.007
[46] C. Gonzalez-Perez and B. Henderson-Sellers, “Modelling software

development methodologies: A conceptual foundation,” Journal of
Systems and Software, vol. 80, no. 11, pp. 1778–1796, 2007.

http://dx.doi.org/10.1016/j.jss.2007.02.048

[47] F. Brooks, The Mythical Man – Month, Addison Wesley, 1995.
[48] S. Dakhli and M. Ben Chouikha, “The knowledge-gap reduction in

software engineering,” in Third Int. Conf. on Research Challenges in
Information Science, Fez, USA, IEEE, pp. 287–294, 2009.

http://dx.doi.org/10.1109/RCIS.2009.5089292

[49] M. Polanyi, The Tacit Dimension, Routledge & Kegan Paul, 1967.
[50] M. Shaw and D. Garlan, Software Architecture, Prentice Hall, 1996.

[51] C. Atkinson and T. Kuhne, “Model-driven development: a
metamodeling foundation,” IEEE Software, vol. 20, no. 5, pp. 36–41,

2003. http://dx.doi.org/10.1109/MS.2003.1231149

[52] S. J. Bolaños-Castro, R. Gonzalez-Crespo and V. H. Medina-Garcia,
“Antipatterns: A Compendium of Bad Practices in Software

Development Processes,” in Int. J. of Interactive Multimedia and
Artificial Intelligence, vol. 1, no. 4, pp. 41–46, 2011.

http://dx.doi.org/10.9781/ijimai.2011.147

[53] S.J. Bolaños-Castro, R. Gonzalez-Crespo, and V. H. Medina-Garcia,
“Patterns of Software Development Process,” Int. J. of Interactive

Multimedia and Artificial Intelligence, vol. 1, no. 4, pp. 33–40, 2011.
http://dx.doi.org/10.9781/ijimai.2011.146

[54] S. J. Bolaños-Castro, R. Gonzalez-Crespo and V. H. Medina-Garcia,

“Patterns of Software Development Process,” IEEE Latin America
Transactions, vol. 12, no. 4, pp. 818–824, 2014.

[55] A. Slihte, J. Osis and U. Donins, “Knowledge Integration for Domain
Modeling,” in ENASE Model-Driven Architecture and Modeling-Driven

Software Development, Portugal, pp. 46–56, 2011.

[56] J. Osis and A. Slihte, “Transforming Textual Use Cases to a

Computation Independent Model,” in ENASE Model-Driven Architecture

and Modeling Theory-Driven Development, Portugal, pp. 33–42, 2010.
[57] J. Osis and U. Donins, “Formalization of the UML Class Diagrams,”

Evaluation of Novel Approaches to Software Engineering, Springer-
Verlag, Berlin Heidelberg, New York, pp. 180–192, 2010.

http://dx.doi.org/10.1007/978-3-642-14819-4_13

Sandro Bolanos, PhD, Pontifical University of Salamanca (Spain).

Extraordinary PhD award at the same University. He graduated in Systems
Engineering and Master in Teleinformatics from the Distrital University

Francisco José de Caldas (Colombia). He is a member of the international

research group GICOGE, Software Engineering Researcher and Lecturer. He
is the Head of undergraduate and graduate curriculum projects. Currently

heads the post degrees in Software Engineering and Informatics Projects at the
Distrital University Francisco José de Caldas.

Contact address: Engineering Faculty, Distrital University Francisco José de

Caldas Carrea 8#40–62 (Bogotá, Colombia);
E-mail: sbolanos@udistrital.edu.co

Rubén González Crespo, PhD, Dean of the School of Engineering at the

Universidad Internacional de La Rioja – UNIR. Professor of Project

Management and Software Engineering. He is an Honorary Professor and
guest of various institutions such as the University of Oviedo and University

Francisco José de Caldas. Previously, he worked as a Manager and Director of
Postgraduate Department of the School of Engineering and Architecture at the

Pontifical University of Salamanca for over 10 years. He has participated in

several I + D + I projects such as SEACW, GMOSS, eInkPlusPlusy among
others. He advises a number of public and private, national and international

institutions. His research and scientific production focuses on accessibility,
web engineering, mobile technologies and project management. He has

published more than 100 works in indexed research journals, books, book

chapters and conferences.
Contact address: International University of La Rioja Madrid office. C/

Almansa s/n. 101 Madrid (Spain);
E-mail: ruben.gonzalez@unir.net

Jordán Pascual Espada is a Research Scientist at Computer Science
Department of the University of Oviedo. PhD from the University of Oviedo

in Computer Engineering, B. sc. in Computer Science Engineering and a

M. sc. in Web. He has published several articles in international journals and

conferences, he has worked in several national research projects. His research

interests include the Internet of Things, exploration of new applications and
associated human computer interaction issues in ubiquitous computing and

emerging technologies, particularly mobile and Web applications.
Contact address: Computer Science Department, University of Oviedo

Science Building. C/ Calvo Sotelo s/n. 33007 Oviedo (Asturias, Spain);

E-mail: pascualjordan@uniovi.es

Vicente García-Díaz is an Associate Professor at the Computer Science
Department of the University of Oviedo. He has a PhD from the University of

Oviedo in Computer Engineering. His research interests include model-driven

engineering, domain-specific languages, technology for learning and
entertainment, project risk management, software development processes and

practices. He is a Certified Associate in Project Management through the PMI.
Contact address: Computer Science Department, University of Oviedo

Science Building. C/ Calvo Sotelo s/n. 33007 Oviedo (Asturias, Spain);

E-mail: garciavicente@uniovi.es

Janis Osis is a Professor at the Faculty of Computer Science and Information
Technology at Riga Technical University, Latvia. He holds Dr. habil. sc. ing.

degree and is an honorary member of the Latvian Academy of Sciences. The

list of publications contains more than 250 titles, including 16 books. During
many years his main research interest was topological modelling of complex

systems. Recent fields of interests are object-oriented system development,
formal methods of software engineering, software development within the

framework of MDA by means of topological functioning model support.

Contact address: Department of Applied Computer Science, Riga Technical
University, Setas Str. 1/3, Riga, LV-1048, Latvia;

E-mail: Janis.Osis@rtu.lv

http://dx.doi.org/10.1023/A:1004460408116
http://dx.doi.org/10.1016/j.infsof.2011.12.003
http://dx.doi.org/10.4018/978-1-61692-874-2.ch003
http://dx.doi.org/10.4018/978-1-61692-874-2.ch003
http://dx.doi.org/10.1109/picmet.2009.5262007
http://dx.doi.org/10.1109/EEIC.1993.631320
http://dx.doi.org/10.1145/1185448.1185493
http://dx.doi.org/10.1016/j.jss.2004.02.022
http://dx.doi.org/10.1016/j.sysarc.2006.06.007
http://dx.doi.org/10.1016/j.jss.2007.02.048
http://dx.doi.org/10.1109/RCIS.2009.5089292
http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.9781/ijimai.2011.147
http://dx.doi.org/10.9781/ijimai.2011.146
http://dx.doi.org/10.1007/978-3-642-14819-4_13

