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Abstract ‒ As part of the superelement approximation 

technology for fragments (subsystems) of the analyzed structures, 

a numerical method of determining the characteristics of 

arbitrary type superelements was developed. The examples of 

simulation models with two-node superelements demonstrated 

the efficacy of the method in the structural analysis of elastic 

systems. 
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I. INTRODUCTION

An important stage of current technical product 

development is computational determination of a state of 

investigated mechanical systems in both static and dynamic 

analysis. It is necessary to obtain information about such 

strain-stress state in order to make a further estimation of 

strength, reliability and durability of mechanisms and 

machines as well as to select strength and kinematic load 

parameters for them. 

The possibility of consideration an elastic system as the one 

that consists of mechanically connected subsystems, i.e., 

elements with known characteristics, can significantly 

facilitate the task of investigation strain-stress state by 

computational methods. Within this framework, rational 

approximation of fragments of the model under consideration 

is proposed in the form of their superelemental analogues. 

This approach eliminates the need of unreasonably 

computationally expensive resources in static and dynamic 

analysis of mechanical systems. 

Work objective is to create a universal approach to the 

strain-stress state analysis of elastic systems with the usage of 

superelements, which approximate the subsystems, and also to 

develop a method for numerical determination of stiffness 

(and mass-inertia) characteristics of superelements. 

II. MATERIALS AND METHODS

Let us consider a static equilibrium, which is compatible 

with kinematic limitations, of an elastically deformable body 

(construction) under the action of external forces. Using the 

finite element method [1], [2] we accomplish a presentation of 

this body as discrete spacial model, being formed of various 

types FE, which are interfaced in nodes, with kinematic 

limitations and applied to the external forces of these nodes. 

Suppose that each node corresponds to the r  degrees of 

freedom, the total number of nodes is Nn, then the number of 

degrees of freedom of the discrete model nN N r . 

Introducing the FE approximation of generalized 

displacement on node values, we get a set of linear algebraic 

equations, which takes into account equilibrium conditions, 

linear relationship between strain and stress, conditions of 

compatibility of strain components and kinematic limitations [3] 

,N N NK u f (1) 

where NK  is the stiffness matrix of order Nx N; Nu  is 

1xN vector of generalized displacement of nodes; Nf  is 

vector 1xN of generalized external load of nodes. 

Fig. 1. Element E  with interface nodes on boundary. 

Let an element (Fig. 1) be connected to the rest of the 

construction in a limited number 
EN of interface nodes. Since

the degrees of freedom for the interface nodes are determined 

by the form of the minimum divider [4] graph of topological 

nodes relationships of FE system, it is possible to represent
NK  as a sum of independent components NK  and E

K , 

associated with divider
e

K : 

N E e EK K K K . (2) 

In the absence of loading for inner degrees of freedom
E

N of 

an element E , that describe only its internal status, it is 

possible to exclude from the system (1) equations that relate to
Eu : 

.

N E

N E

N E E e

u u u

f f f

K K K K K

(3) 

The set of equations which does not contain internal 

degrees of freedom of the element E is given by 
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.E e

K u f

K K K
 (4) 

That way, we come to the concept of superelement, namely, 

an associated with the rest of construction single element, and 

accordingly, FE model in limited quantity of interface nodes

( )eN N , which is fully characterized by its local stiffness 

matrix eK  of order ( ) ( )e erN rN . 

If the number of degrees of freedom for each node of the 

finite element model is the same, the given superelement can 

be directly connected to any other FE or to other 

superelements, and conjugation conditions correspond to the 

equality of kinematic and force factors at corresponding nodes 

(of interfacing). 

Let us assume that FE model containing superelement E is 

characterized by stiffness matrix E eK K K . It is also 

suggested that the stiffness matrix EK  is known, in other 

words, for every FE that is distinguished from E physical, 

topological and geometrical properties are defined. 

Fig. 2. Superelement E  cooperating with beam type elements. 

Without generality restriction, in this context, we consider a 

system (Fig. 2), composed of superelement E  and 
eN  beam 

two-node FE [5], each of which connected with one node to a 

corresponding interface node of the superelement, and the 

other node is rigidly fixed. We shall call these beam elements 

“a trial”. 

Every element of the introduced system compliance matrix 

P  is essentially linear 
j

iu or, respectively, angular  

displacement of i  node in the direction under the influence 

of a single generalized force factor, which is applied at j node 

in the direction . The system of equations (4) can be 

rewritten as  

P f u  , 

where 1 .P K  (5) 

For spatial continuum models in every node of 

superelement interfacing the conditions of compatibility for 

the three degrees of freedom, which are corresponding to 

linear displacements , ,x y zu u u , should be fulfilled. In the case 

illustrated in Fig. 2, the given conditions have to be 

supplemented by matching three rotation angles , ,x y z   , as 

there is a conjugation of three-dimensional continuum with 

beam elements having three and six degrees of freedom in 

every node [4]. 

Conjugation of the three-dimensional continuum on the six 

degrees of freedom can be represented as a compound of the 

small contact area on the surface, the stress-strain state of 

which can be integrally characterized by generalized force 

factor at the point (node interface) belonging to a given area. 

Thus, considering the six degrees of freedom  

( , , , , ,x y z x y zu u u    ) in each of the nodes the system is 

changing the (5) as: 
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To determine the physical meaning of P  exert a unit force

1xP  in the first node in the direction of the first degree of 

freedom (linear displacement along x ). The rest of the nodal 

loads are considered to be zero. From (6) it can be seen that 

the vector u  is equal to the first column of the matrix P  

and represents generalized displacements of all nodes of the 

system under the action of the unit force applied in the 

direction
1xu . Then, having loaded the first node in the 

direction of its second degree of freedom (linear movement to

y ) with the force 1 1yP , the remaining nodal loads are taken 

as zero, and, in this case, vector u  is equal to the second 

column of the matrix P  in (6). Applying a single moment 

1xM  at the first node in the direction of its fourth degree of 

freedom (angular displacement x ), the rest of node loads will 

remain zero. Then the vector corresponds to the fourth column 

of the matrix P , and so on. 

It should be mentioned that, according to the displacement 

reciprocity theorem, for the elastic mechanical system 

compliance matrix P  is symmetric [1]. Consequently, when 

loading system in each of the nodes with generalized unit 

forces in the direction of all degrees of freedom and 

determining generalized displacements of nodes, we get all the 

columns of the system compliance matrix P . 

Altogether, it is obviously necessary to perform 
nrN  

computation.  

Inverting compliance matrix, we find the stiffness matrix of 

the system: 
1

K P . (7) 

Since the stiffness matrix of the system with excluded 

superelement EK  composed of stiffness matrices of trial 

elements is known, then  knowing K , we can obtain from (3) 

the local stiffness matrix eK  at the ranging mark that 

coincides with the selected global coordinate system. 

.e EK K K  (8) 

It is to be noted that the stiffness characteristics (8) of the 

superelement E  can be used in any other finite element model 

with the coincidence of the topology of connections and 

degrees of freedom of interfacing nodes. 

Finding the compliance matrix of the system is convenient 

to realize according to the calculations in any computing 

environment: Ansys, Nastran, etc. [6]. Let us consider a two-

node superelement (of generalized beam type), effectively 

used for the approximation of attachment points of the side 

blocks to the central of dynamic beam models of liquid carrier 

rockets (CR) of packet layout [7], [8]. To find the stiffness 

characteristics of the superelement we consider the system of 

FE (Fig. 3), consisting of two beam elements № 1 (1.2 nodes) 

and № 3 (3.4 nodes), the local stiffness matrices 1K  and 

3K  of which are known and the superelement № 2 (nodes 

2.3). 

Stiffness matrix of FE system (Fig. 3) is defined as the sum 

of elemental contributions: 

1 2 3 .e e eK K K K  (9) 

Fig. 4 shows the formation of a global stiffness matrix of 

the system (Fig. 3) from the local FE matrices with non-zero 

blocks of size 12x12 (highlighted in light gray). Components 

of elements № 1 and № 2 are summed up for degrees of 

freedom of node 2 (highlighted in dark gray), and similarly for 

elements № 2 and № 3 at node 3. Since the nodes 1 and 4 are 

restrained, the generalized displacements for them are 

identically zero. In this regard, by excluding 12 occurring 

identities of the form 0 0 , we come to the FE system 

stiffness matrix of size 12x12, which includes a local stiffness 

matrix of the superelement with two additives 6x6 in the upper 

left and bottom right segments (Fig. 5).  

 
 

                                               a b 
Fig. 3. The calculation scheme for determining the stiffness characteristics of  two-node superelement (a) and its approximation (b). 
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Fig. 4. Type of the global and the local stiffness matrices of FE (Fig. 3). 
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Fig. 5. Structure of the stiffness matrix of the system FE with the conditions of 

restraint for the 1st and 4th nodes. 

Subtracting from the global stiffness matrix of the system 

(9) the local units of matrices FE № 1 and № 3, we obtain the 

sought stiffness matrix of a two-node superelement. 
2 1 3

e e eK K K K . (10) 

To find the global stiffness matrix K  of the FE system 

(Fig. 3) node 2 should be loaded sequentially by unit forces 

and moments in all six degrees of freedom, thereby 

determining the three linear and three angular displacements 

in each of the nodes 2 and 3. Thus, we derive the first six 

columns of the compliance submatrix 6x12 of the system. 

Then in a sequential order the node 3 is loaded by unit 

forces and moments in all six degrees of freedom, fixing three 

linear and three angular displacements in each of the nodes 2 

and 3. As the result we get the second six columns of the 

compliance system matrix, i.e. the second sub-matrix 6x12.  

In total, obviously, in order to find a complete compliance 

matrix of FE system 12 calculations must be made; as a result 

of each of them 12 of generalized displacements are defined. 

Inverting the resulting matrix P , we obtain the global 

stiffness matrix K . Then, by subtracting the known blocks of 

stiffness matrices of beam FE we determine the local stiffness 

matrix of arbitrary form for the two-node superelement 

(Fig. 3). 

Matrix 2

eK  calculated in such a manner can be used in any 

other model of FE without any changes with conformance of 

the degrees of freedom at interfacing nodes.  

If the considered structural member is connected to the rest 

of the mechanical system in two local zones close to the point, 

the scheme of its two-node approximation can be used directly 

both in static and in dynamic analysis. 

In practice, during interacting structural elements there can 

be a plurality of local conjugation points (bolted, riveted 

joints, etc.) or conjugation areas (welded joints, etc.). It is 

obvious, that the approximation with the usage of two-node 

scheme is not applicable here and simulation model with the 

actual number of nodes (zones) should be used, such as shown 

in Fig. 2. 

An attempt can be made to average the obtained generalized 

displacements for the plurality of interfacing nodes, which 

leads superelement model to the conventional two-node 

analogue. The averaging method in each case should be 

selected out of structural, physical and other considerations. 

Let us consider the case when there are 
1M  points for 

interfacing with other elements of the elastic system on the 

surface 
1S  of element E  and 

2M  of them on the surface
2S . 

By analogy with Fig. 2 we consider discrete model of system 

and perform 
1 2r M M  calculations, loading in turn all the 

nodes belonging to the surfaces 
1S  and 

2S  with the 

generalized unit forces in the direction of all the generalized 

coordinates. As the result generalized displacements in each of 

the nodes on the surfaces 
1S and

2S  are obtained. Following 

(5) and (6), the compliance matrix of FE system is determined. 

Inverting it and subtracting the known local matrices of "trial" 

elements, we derive the local stiffness matrix of the 

superelement E  of size
2

1 2r M M . 

The static equivalent of generalized internal forces within 

the conjugating surfaces 
1S  and 

2S  can be defined as the 

arithmetic mean of the respective degrees of freedom in the 

form of vector of averaged forces esf . Then, after finding 

the ratio of the arithmetic mean of the internal forces work to 

arithmetic means of the internal forces on the relevant degrees 

of freedom, we obtain the energetic form of the local 

compliance matrix eP  of superelement. Inverting it, we get 

the local stiffness matrix 2 2r r  of superelement with a block 

of the non-zero elements. 

As can be seen, in the proposed method of averaging in the 

presence on the surfaces
1 2S S  of the element E  points  

(
1 2M M ) of conjugation it is necessary to make force 

calculations, and then a rather complex process for averaging 

the results, which is quite cumbersome. If one neglects the 

deformation of the conjugating surfaces, it is possible to 

implement a simpler engineering approach. Conventionally 

supplement the analyzed element with two thin weightless 
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absolutely rigid fragments belonging to the mating surface and 

attached to them in the interface nodes. Let us choose on each 

of these fragments a single node of adduction with two "trial" 

elements attached to them. 

The scheme corresponds to Fig. 3 and for its definition only 

calculations are required. Obviously, the stiffness 

characteristics of the thus modified superelement, when 

surfaces of conjugation are of small area or in case of 

smallness of relative strain on each of the surfaces, will be 

slightly different from the corresponding values of the original 

superelement.   

III. CONCLUSION 

1. An efficient numerical method for constructing the 

matrix ductility (in the form of the Green's matrix) as a result 

of the superposition of elastic solutions based on FEM for 

superelement (substructure) of any kind in its sequential 

loading generalized unit forces at the nodes of pairing was 

presented. 

2. The method was developed, comprehensively tested and 

effectively implemented in the two-node versions of 

superelements used to approximate areas of the central module 

interfaces and side blocks in the simulation of dynamic models 

of liquid rockets with packet layout for commercial purposes.  
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