
Applied Computer Systems

 ___ 2015/17

69

Towards a Standard-Based Domain-Specific

Platform to Describe Points of Interest

Vicente García-Díaz 1, Jordán Pascual Espada 2, B. Cristina Pelayo García-Bustelo 3,

Juan Manuel Cueva Lovelle 4, Janis Osis 5,
1, 2, 3, 4 University of Oviedo, Spain, 5 Riga Technical University, Latvia

Abstract – With the proliferation of mobile and distributed

systems capable of providing its geoposition and even the

geoposition of any other element, commonly called point of

interest, developers have created a multitude of new software

applications. For this purpose, different technologies such as the

GPS or mobile networks are used. There are different languages

or formats used to define these points of interest and some

applications that facilitate such work. However, there is no

globally accepted standard language, which complicates the

intercommunication, portability and re-usability of the

definitions of points of interest currently in use. In this paper, we

take the first steps towards a language and a development

environment independent of the underlying technologies,

allowing developers to define the points of interest in a simple

and fast way, and automatically generate other different formats

from the same definition that can be considered a bridge among

current technologies. We use the Model-Driven Engineering

approach, focusing on the creation of models to abstract the

definition of systems from the underlying technologies.

Keywords – Augmented reality, development environment,

domain-specific language, point of interest.

I. INTRODUCTION

A Point of Interest (POI) is a specific point location that

someone may find useful or interesting for something in a

concrete Region of Interest (ROI), typically grouped by POI

collections. The concept of POI is widely used in different

fields, such as medicine or environment exploration. Thus, for

example, Chan et al. [1] refer to POIs in a human body that

were traced on image frames, allowing different pathologies to

be measured, or Erdelj et al. [2] combine coverage of multiple

POIs and network connectivity preservation with environment

exploration in order to capture dynamic processes in a specific

monitored area.

New technologies have allowed the development of

multiple cartography software applications mostly focusing on

Global Positioning System (GPS) navigation software [3] or,

more generally, Geographic Information System (GIS) [4].

They are based on information that can be located spatially

(POIs) and represented as a latitude, longitude and altitude

triple, providing operations on and between different

positions. In addition, Augmented Reality (AR) applications

[5] use the same principles to show information to users

depending on their current position at a specific moment of

time. Some common POIs include street names and numbers,

gas stations, hospitals, restaurants, tagged photos taken with

digital cameras, GPS-tracked vehicles that are moving etc.

Given the importance of POIs, especially from the

geographical point of view, large databases of information are

being created, for example, the OpenStreetMap Project,

consisting of a knowledge base that creates and distributes

user-generated geographic data for the world [6]. However,

one of the major problems encountered when working with

POIs is the heterogeneity that exists in the formats used to

represent them. There are several reasons that led to this

situation among which may include: 1) a large number of

different software tools that work with points of interest; 2)

the lack of a standard widely adopted in the industry; and 3)

the rapid expansion in a short time span, which has caused

different companies working simultaneously and with similar

objectives, but taking different approaches. Thus, tools are

incompatible with each other and developers spend many

resources trying to convert information to other format types

by ad-hoc solutions.

Although there is still no comprehensive solution to avoid

the heterogeneity of formats used by different manufacturers,

there are solutions that can help to reduce the impact of this

situation. Thus, different tools and software development

approaches continuously appear in the software engineering

field, trying to abstract the development from specific

platforms or technologies (e.g., virtual machines, APIs,

frameworks etc.). It is widely considered that the Model-

Driven Engineering (MDE) approach, in which the level of

abstraction of developments is increased through the use of

models, is a step forward in the development of software [7],

since developments are being benefited from the advantages

provided by MDE (e.g., in García-Díaz et al. [8] food

traceability systems for different clients are created in a quick

and dynamic way).

MDE is based on the use of models, which conform to a

single domain-based metamodel, which in turn is defined

based on a common meta-metamodel, root of all the elements

of any software development. This idea makes up the

architecture of four layers defined in the Model-Driven

Architecture (MDA) standard [9]. The common base allows

for a wide range of supported environments and tools working

together. As a result, if a metamodel for a specific knowledge

domain is defined (e.g., food traceability or points of interest),

it would be possible to create a Domain-Specific Language

(DSL) [10] based on MDE tools, designed only to define the

important specific items (e.g., food manufacturing processes

or features of points of interest). Internally, the use of

standard-based modeling technologies allows direct and

doi: 10.1515/acss-2015-0010

Applied Computer Systems

2015/17 ___

70

automatic transformations to different formats defined by

different software manufacturers. There are many studies in

MDE that serve to advance in the systematic use of DSLs. For

example, the authors in [11] take advantage of use cases to

provide a formal base for generating standard-based models or

the authors in [12] work on formal trace links to avoid

inconsistency between software and specifications.

The main aim of this paper is to take the first steps towards

the creation of a standard-based platform for defining points of

interest in a simple and common way. Internally, definitions

are automatically transformed into different formats. Thus,

specific goals are:

1. To identify the basic elements that a

format/representation language for POIs must possess;

2. To create a DSL to define POIs. We call it PoiDSL;

3. To allow automatic transformation of definitions made

with PoiDSL to any other format;

4. To provide an Integrated Development Environment

(IDE) to work with PoiDSL. We call it PoiIDE;

5. To study the advantages of the proposal by a comparison

with other alternatives.

The remainder of this paper is structured as follows: in

Section II, we present a description of the relevant state of the

art (goal [1]); in Section III, we describe our proposal (goals

[2]–[4]); in Section IV, we discuss a comparison of the

proposal with some alternatives and a qualitative analysis

(goal [5]) and finally, in Section V, we indicate our

conclusions and future research to be conducted.

II. BACKGROUND

There are many formats used to represent points on the

Earth. The simplest ones are based on plain text and Comma-

Separated Values (CSVs) data, which are too generic to

promote the automatic and semantic processing of contents,

having their strength in writing tabular data. However, they

have important drawbacks such as the inability to organize

information hierarchically or perform validations using a

schema or metamodel.

The GPS eXchange format (GPX)1
 is an XML data format

for the interchange of GPS data between applications and Web

services. GPX allows the definition of collections of POIs. If

the collection is an ordered list of points describing a path, it is

called track. If, in addition, the track is used to lead to a

destination, it is called route. Since this format does not

include a large amount of information for each POI, some

companies created extensions to the GPX format for including

more information such as street addresses, phone numbers,

business categories, air temperature, depth of water etc.

The Overlay format (OV2) [13] contains a database of POIs

that are typically used by TomTom GPS devices. An OV2

document consists of a sequence of variable-length records

1 http://www.topografix.com/gpx.asp, accessed in Nov. 2014

with elements of a predefined number of bytes. In addition to

this simple format, it is possible to supplement the information

with external itinerary files created in plain ASCII [14]. They

consist of lines, each marking one point in the itinerary.

TomTom needs the use of other proprietary external file

formats, such as CAP to extend the location-sensitive menu,

TMF to change the icons of elements on the screen or GF to

provide graphic information regarding shapes and elements.

The OpenStreetMap project creates and distributes free

geographic data using the OSM format [6]. The basic concepts

on the OpenStreetMap world are points, which can be used to

represent POIs, such as shops or fuel stations, areas, which are

more detailed than points, since they provide information on

the boundaries of the elements and lines that are used to

represent elements, such as roads or rivers. The OSM file

format has many other variations, such as Protocolbuffer

Binary Format (PFB) that is intended as an alternative to the

XML format; the O5M format that was designed to be a

compromise between OSM and PBF formats; or OSM JSON

that is a JavaScript Object Notation (JSON) [15] variant of

OSM XML.

The Keyhole Markup Language (KML) [16] works on

many applications, such as Google Earth, Google Maps,

NASAWorld-Wind or ESRI ArcGIS Explorer. It is intended to

show any kind of geographic data (POIs, descriptions, ground

overlays, paths and polygons). POIs are represented through

the Placemark construction. In turn, a PlaceMark is a Feature

element with associated Geometry, which inherits from

Object, the root element of any KML document. It is

maintained by the Open Geospatial Consortium2
 (OGC). In

addition, it provides a mechanism for extensions used by

Google for creating specific fields for the Google Earth

application (e.g., the flyTo element to specify a point in space

to which the browser will fly at a given moment). Another

interesting format is KARML [17], an extension of KML

intended to include AR-specific content.

The Augmented Reality Markup Language (ARML) [18] is

intended to focus on AR applications by adding specific

information not presented in other formats like KML and

removing information that may not be interesting from the

point of view of AR. In its version 1.0, it is a proprietary

format used mainly in the AR browser called Wikitude 3 .

Version 2.0 is a proposed standard that is currently being

reviewed by the Open Geospatial Consortium4. In addition to

Wikitude, there are many other augmented-reality browsers

like Junaio or Layar [19]. They are applications which may,

among other things, display information about the user

surroundings, usually in a mobile camera view. Fig. 1 is a

screenshot of a simple AR application created for the Android

operating system. It uses the ARML format to retrieve the

information of the points of interest closest to the user.

2 http://www.opengeospatial.org, accessed in Nov. 2014
3 http://www.wikitude.com, accessed in Dec. 2014
4 http://www.opengeospatial.org/projects/groups/arml2.0swg, accessed in

Dec. 2014

Applied Computer Systems

 ___ 2015/17

71

Fig. 1. Augmented reality browser example.

To create POIs, the Junaio AR browser proposes the AREL

language, which is composed of two parts. AREL XML, a

XML-based language, which defines the static information of

all the content and AREL JavaScript, which is an API to

define the interactions and behaviors of elements. The concept

is similar to other systems, such as Wikitude that, in addition

to using a format to define the static part of the points of

interest, uses a General-Purpose Programming Language

(GPL) to define behaviors. The main difference is the

possibility of being combined and integrated in Junaio.

Finally, there are other formats, for example, Garmin

Mapsource (GDB), Pocket Street Pushpins (PSP), Maptech

Marks (MSF), Maptech Waypoint (MXF) or OziExplorer

(WPT) that may not be as well-known as the format listed

above and that they share virtually the same data, so we do not

go into more detail in this paper.

With all this variety of formats, there are several tools that

facilitate the creation, edition and transformation of POIs. For

example, PoiEdit5
 supports reading and writing in a variety of

formats by displaying items on a map view. PoiEditor6 is a

web-based tool that allows the creation of lists of POIs in a

simple way. There are even other tools with similar purposes

such as ExtraPoiEdit7 or PoiExpert8. In addition, there are lots

of custom applications created for making conversion among

specific formats (e.g., OV2 to KML, OV2 to CSV, KML to

GPX etc.). Although there are very useful tools, they are

limited because depending on the case different reasons

5 http://www.poiedit.com, accessed in Nov. 2014
6 http://www.poieditor.com, accessed in Nov. 2014
7 http://garmin.gps-data-team.com/extra, accessed in Nov. 2014
8 http://tomtom.gps-data-team.com/poi/poi-expert.php, accessed in Nov.

2014

include: 1) closed architectures that do not allow extensions;

2) small number of formats that are handled; 3) small number

of features for POIs that can be defined; 4) lack of standards to

facilitate interoperability with other environments and the

creation of extension points; and 5) lack of a flexible

environment to define POIs in a platform-independent way.

A. Basic Elements for Specifying Points of Interest

Table I shows a list of features that are commonly used to

describe POIs through formats supported by different tools.

For example, the ARML format manages all of such features.

It is important to note that not all the formats or languages

provide all the features, and some of them support more

features than the included ones in its language schema. As an

example, the Wikitude software development kit (SDK)

allows creating very complex and rich AR worlds with 3D

models, animations, sounds and videos not supported in

ARML 1.0, its native AR definition format, but using the

JavaScript programming language. Indeed, other languages to

define POIs such as AREL manage general metadata

information (e.g., copyright, creator, etc.) also not included in

ARML 1.0.

Among all the elements used to describe POIs, in this paper

we focus, as a first step, on structural information supported

by ARML 1.0, arguably the most important language to define

POIs focusing on AR applications, our first target domain of

knowledge. Other features defined by other formats, such as

the definition of custom views, 3D models, attachments,

positioning through natural features or behavioral information,

are beyond the scope of this paper.

TABLE I

COMMON ELEMENTS USED TO DESCRIBE POINTS OF INTEREST
FOR DIFFERENT FORMATS

 Description

Point of Interest

Id A unique identifier for the POI

Name Name of the POI that is displayed as POI title

Description A brief description of the POI

Latitude Latitude of the POI

Longitude Longitude of the POI

Altitude Altitude of the POI

URL URL associated to the POI

Phone Phone number associated to the POI

Email Email address associated to the POI

Address Physical address associated to the POI

Icon URL of an icon associated to the POI

Provider

Id A unique identifier for the provider

Name The name of the provider

Description A brief description of the provider of the POI

URL A URL that represents the provider

Logo The URL of a corporate image

Applied Computer Systems

2015/17 ___

72

III. OVERVIEW OF THE SYSTEM

Decision in favor of a new DSL is usually not easy because

it is much less expensive (both in time and cost) to adopt an

existing DSL if available or even to use a General-Purpose

Languages (GPL), such as Java or C#. There are mainly only

two reasons why it is worth creating a new DSL [20]:

1) improved software economics, giving some authors as a

reference point three developments [21] to obtain a positive

return on investment; and 2) easy-to-use, i.e., people with less

domain and programming expertise are able to develop

software, and even end-users with some domain, but no

programming expertise [22], [23].

Since our goals are compatible with both criteria, we have

created a new DSL based on common elements used to

describe the structural part of any POI. To that end, we have

used the Xtext framework [24], which allows the creation of

both GPLs and DSLs in a relatively easy way [25]. From a

grammar and some other definitions, it is possible, for

example, to get a working parser and linker and also a

complete Eclipse-based IDE [26].

A. PoiDSL

Next, there is a fragment of the context-free Xtext grammar

used as a basis of the PoiDSL language. It is possible to see

the definition of each POI through the use of three grammar

rules.

Poi:

 'Poi' '{'

 'id' '=' name = ID

 'provider' '=' provider = [Provider]

 'name' '=' realName = STRING

 ('description' '=' description = STRING)?

 'location' '=' location = Location

 ('infoURL' '=' infoURL = STRING)?

 ('iconURL' '=' iconURL = STRING)?

 ('phone' '=' phone = STRING)?

 ('email' '=' email = STRING)?

 ('address' '=' address = STRING)?

 '}' ;

Float: ('-')?INT ('.'INT)?;

Location: Float ',' Float (',' Float)?;

Note that there are some elements such as phone numbers,

email addresses or URLs that are difficult to validate using

grammar expressions since that is an error-prone task. This is

the reason why we try to leave the grammar as simple as

possible (e.g., we just indicate that an email address should

have a String type) and we rely on third-party libraries to

make the necessary validations.

For example, we use the libphonenumber library9
 to check

whether phone numbers are correct. The Apache Commons

project10
 is used to check whether URLs are well formed. In

9 https://code.google.com/p/libphonenumber, accessed in Dec. 2014
10 http://commons.apache.org, accessed in Dec. 2014

addition, we make use of the JavaMail API11 that provides a

platform-independent framework to build mail and messaging

applications to check whether email addresses are correct.

 @Check

 def checkValidEmailAddress(Poi poi) {

 if (emailAddr != null)

 try {

emailAddr = new

InternetAddress(poi.email);

 emailAddr.validate();

 } catch (AddressException ex) {

error('The email address is not

valid. Please change it.',

PoiDSLPackage.Literals.POI__EMAIL,

INVALID_EMAIL);

 }

 }

The code above shows what is needed in Xtext to check if

each of the email addresses typed by the developers is valid.

Only a few lines of code are required to indicate whether the

development environment should display an error message to

the developer explaining why it occurs and the exact point in

the code. Similarly, it might display a warning message

instead of an error one if the issue were not so serious.

The Xtext-based grammar is transformed internally and

automatically into an ANTLR grammar [27] to implement the

lexer (lexical analysis) and the parser (syntactic analysis) that

is used when a programming language is being defined. In

addition, it also generates all the necessary infrastructure to

create the Abstract Syntax Tree (AST) to perform a semantic

analysis on the language elements [28]. The iteration through

the tree is performed using model-based technologies,

particularly the Eclipse Modeling Framework [29], which

serves to ensure interoperability of the generated DSL with

many other model-based existing tools, such as the tools

defined in the Eclipse Modeling Project [30], to help improve

software development productivity.

B. Transformation from PoiDSL to Other Formats

The fragment of code below shows a fragment of the

template that is used to generate artifacts from any of the

models defined using PoiDSL. In this example, the generation

is focused on automatically converting the model into an

ARML file (particularly, providers and POIs). The idea of this

approach is to generate from a model, easily and

automatically, the code for the points of interest in any other

format (it would only be necessary to add new templates).

Similarly, it could be possible to perform the opposite

operation, which is, reusing the PoiDSL metamodel to create

models from other formats. That would be a key step to

benefit from all the advantages of integration and reuse

offered by the MDE approach (e.g., the use of common

repositories and version control systems for models).

11 http://www.oracle.com/technetwork/java/javamail, accessed in Dec.

2014

Applied Computer Systems

 ___ 2015/17

73

def compile(Provider p) '''

 <ar:provider id="«p.name»">

 <ar:name>«p.realName»</ar:name>

 «IF p.description != null»

 <ar:description>«p.description»</ar:description>

 «ENDIF»

 «IF p.infoURL != null»

 <wikitude:providerUrl>«p.infoURL»</wikitude:provid

erUrl>

 «ENDIF»

 «IF p.logoURL != null»

 <wikitude:logo>«p.logoURL»</wikitude:logo>

 «ENDIF»

 </ar:provider>

 '''

 def compile(Poi p) '''

 <Placemark id="«p.name»">

 <ar:provider>«p.provider.name»</ar:provider>

 <name>«p.realName»</name>

 «IF p.description != null»

 <description>«p.description»</description>

 «ENDIF»

 <wikitude:info>

 «IF p.iconURL != null»

 <wikitude:thumbnail>«p.iconURL»</wikitude:thumbnai

l>

 «ENDIF»

 «IF p.phone != null»

 <wikitude:phone>«p.phone»</wikitude:phone>

 «ENDIF»

 «IF p.infoURL != null»

 <wikitude:url>«p.infoURL»</wikitude:url>

 «ENDIF»

 «IF p.email != null»

 <wikitude:email>«p.email»</wikitude:email>

 «ENDIF»

 «IF p.address != null»

 <wikitude:address>«p.address»</wikitude:address>

 «ENDIF»

 </wikitude:info>

 <Point>

 <coordinates>«p.location»</coordinates>

 </Point>

 </Placemark>

 '''

C. PoiIDE

Based on the Xtext architecture, some of the features

included in development environment called PoiDSL are:

 Custom syntax-highlighting to distinguish the different

elements of the language (e.g., keywords, comments or

variables). This is done by implementing the Xtext

interfaces IHighlightingConfiguration and

ISemanticHighlightingCalculator;

 Content assistant to help the developer to write a code

faster and more efficiently through the use of the auto-

complete functionality (extending the

TerminalsProposalProvider class);

 Static validation of the language elements to detect

syntactic and semantic issues (extending the

AbstractDeclarativeValidator class);

 Suggestions for fixing errors or problems identified in the

code (extending the DefaultQuickfixProvider class);

 Templates that allow developers to reduce the learning

curve for typical operations;

 Formatting the code through a feature called code

beautifier to distribute it properly and promote its

maintenance (extending the

AbstractDeclarativeFormatter class);

 Outline view fully configurable to both the elements that

appear and text or icons attached to them (extending the

DefaultObjectLabelProvider class).

Fig. 2 is a screenshot of the environment when a model is

being created. It shows different features. For example, the

syntax-highlighting for different elements (e.g., keywords,

strings, codes, numbers), the static validation marking a phone

number as not valid because settings state that phone numbers

must be valid in Spain (of course, we could customize the

settings) and the outline view showing a summary of the

elements that are being used.

Fig. 2. Augmented reality browser example.

Applied Computer Systems

2015/17 ___

74

Fig. 3. Comparing PoiDSL, ARML and KML working with one provider and five POIs.

In addition, it is possible to perform other customizations

such as specifying the scope of the variables of the language.

Thus, the PoiDSL is a full-fledged development environment

integrated in the Eclipse platform with the resulting

advantages it provides (e.g., well-known and proven platform

for developers, large number of tools and plug-ins, open

environment etc.).

IV. EVALUATION

The sections below are dedicated to a qualitative and

quantitative study to show the characteristics of PoiIDE and

PoiDSL, justifying the design and the need for their creation.

A. Qualitative Analysis

To achieve a better quality of the language and the

environment design and a better acceptance among its users,

Karsai et al. [31] have proposed some guidelines largely based on

their experience in developing languages as well as relying on

existing guidelines on programming and modeling languages.

Table II serves to verify that these guidelines are met.

B. Quantitative Analysis

In this section we evaluate the PoiDSL language. We obtain

a quantitative measurement that allows us to evaluate the main

objective of our proposal; simplify and make more agile the

definition of points of interest in software applications.

In this first step of the development, we are going to do a

brief comparison between the definitions of five different

POIs through the use of PoiDSL, the standard way used by the

ARML format, and the KML format used by companies as

Google. Since with PoiDSL it is possible to automatically

generate a code for ARML and any other format, if the syntax

used by PoiDSL is more compact, then it can clearly be seen as

advantageous over other languages or formats. The measured

aspects in the code and the structure are the ones below:

 Code lines: it refers to the number of lines of information

needed to define the POIs in each case;

 Words: a number of words used;

 Characters: a number of characters, spaces included.

Table III shows the information included in the case study

regarding the provider and Table IV shows the information

included in the case study regarding the different POIs.

In the obtained results of the analysis (Fig. 3), we can

observe that with PoiDSL we require fewer code lines, words

and characters to define the same information than with the

ARML format. The same applies to KML. Moreover, with the

generation of code for the KML format, we lose some

information because not all the information defined with

PoiDSL is easily supported by KML (e.g., provider

information or email addresses). Therefore, the difference

would even be more representative in this case.

V. CONCLUSION AND FUTURE RESEARCH

In this paper, we have presented the first version of a

language for defining POIs (PoiDSL) and a development

environment to facilitate working with those POIs (PoiIDE).

This has been done by identifying basic elements that are

useful to define a geographic point of interest to a person. In

addition, we have defined mappings for transforming models

made with PoiDSL to ARML and KML, and created the basis

to do the same with other different popular formats (e.g.,

KARML), which favor the development and increase

productivity and interoperability among systems. Finally, the

use of PoiDSL through the PoiIDE is easier than the manual

and specific handling of other formats with identical purposes.

Future research will be aimed at improving and adapting

both PoiIDE and PoiDSL with new formats and features to

define POIs. Specifically, we will delve into the static part

(e.g., custom views, 3D models, attachments, positioning

through natural features, styles, meta-information etc.) and

emphasize the dynamic part (i.e., behavior). One of the main

tasks to be performed will be the adaptation of the

environment to the developing standard called ARML 2.0,

since its final adoption could guide the future of the industry

regarding augmented reality. Another future study will be

focused on performing mappings between different formats

through a bridge metamodel [37], which serves as a basis to

easily make transformations among them (e.g., between

ARML and KML and vice versa). All these tasks are

fundamentally based on the technologies offered by the MDE

[39], [40], [41], specifically the Eclipse Modeling Project that

being not tied to any organization, which defines standards for

MDE such as the Object Management Group (OMG) 12 ,

implements many of its standards [44].

Finally, we will perform a usability study with real users for

quantifying how simple, easy and intuitive our proposal is for

them [38]. The idea is to work with people with different

profiles and ask them to define several POIs using different

techniques. That way, we will observe, among other things, the

efficiency, the learning curve and the number of errors made.

12 http://www.omg.org, accessed in Nov. 2014

Applied Computer Systems

 ___ 2015/17

75

TABLE II

GUIDELINES FOR A BETTER QUALITY AND BETTER ACCEPTANCE AMONG ITS USERS

Guideline Accomplishment

Language purpose

Identify language uses early The language is used mainly for documentation of knowledge and code generation.

Ask questions about uses Any person with interest in defining POIs will be able to model with the language.

Make your language consistent [32] It is consistent with the sole idea of defining and creating POIs.

Language realization

Decide carefully whether to use graphical
or textual realization [42], [43]

Textual realization is based on the advantages noted by Groenniger et al. [33]: 1) less space is needed to display
the same information; 2) more efficient creation of code; 3) easier integration with other languages; 4) higher

speed and better quality of the formatting; 5) platform and tool independency; and 6) better version control
support. Besides, graphical realizations provide a better overview and ease the understanding of models [31], but

in a very close and specific domain like POIs, we believe that the advantages of textual languages are more

important.

Compose existing languages where possible

Instead of starting from scratch, we have used the entire ecosystem of tools provided by the Eclipse Modeling
Project, specifically Xtext, DSL to define other DSLs, which rely heavily on the use of the Xtend language, an

extension of the Java language, primarily intended to support the creation of DSLs (e.g., validations and code
generation)

Reuse existing language definitions
To create PoiDSL, we have used the core grammar of Xtext as a basis to avoid redefining elements already
defined previously.

Reuse existing type systems
Related to the previous point, we have reused the core data types defined by the creators of Xtext with the aim of
reusing the existing knowledge.

Language content

Reflect only the necessary domain concepts
It only contains the basic elements needed to generate a code in the different target formats, so no extra domain

concept is added.

Keep it simple
With a small number of elements, simple syntax and reduced domain of knowledge, we think that the language is
easier than other alternatives. The quantitative analysis also suggests the same idea.

Avoid unnecessary generality
Due to the close domain of the language, we did not include the generalization concept, meeting with the
principle of designing only what is necessary.

Limit the number of language elements
The language is small, having only 13 domain-specific keywords (e.g., Java has 50 generic keywords and C#
even more).

Avoid conceptual redundancy Each fact can only be described in a unique way, avoiding redundancy.

Avoid inefficient language elements
Each element is needed for clarity and used with the only purpose of allowing the generation of the final code, so

there are no inefficient language elements.

Concrete syntax

Adopt existing notations domain experts
use [34]

POIs are usually defined with textual notations using a tree-based structure, similar to the structure adopted by
most of the formats used commonly to define POIs, based on XML.

Use descriptive notations
The language has a small number of keywords with syntax highlighting and code completion support. In addition,
frequently-used symbols in other languages such as =, { or } maintain their semantics.

Make elements distinguishable Keywords, different syntax highlighting and an outline view are used to make elements distinguishable.

Use syntactic sugar appropriately
We avoid syntactic sugar since we think that in a small DSL expressing the same concepts in different ways can
be counterproductive, confusing users and hindering validation and code generation unnecessarily.

Permit comments [35] Support for common types of comments: single-line comments (//) and multi-line comments (/*..*/).

Provide organizational structures for

models

Organizational structures such as packages are important for complex systems. However, to keep the language

simple, we intend to have the definition of a collection of the POIs in the same organizational structure.

Balance compactness and comprehensibility
The quantitative analysis shows that this approach may require fewer elements than other approaches. However,

since it is a DSL with concrete semantics for the domain, it is even more comprehensible.

Use the same style everywhere
All the elements of the language have the same look-and-feel and we do not embed any external language that
can complicate the understanding of the language by using another syntax.

Identify usage conventions
Based on an ANTLR grammar, we define typical usage conventions, including notation of identifiers, order of
elements or type of comments.

Abstract syntax

Align abstract and concrete syntax

We have taken into account the three principles mentioned in Karsai et al. [31]: 1) elements that differ in the

concrete syntax also have different abstract notations (e.g., POIs and providers are based on different
metaclasses); 2) elements that have a similar meaning can be internally presented by reusing concepts of the

abstract syntax (e.g., the Location rule for placing POIs has been created using three Float rules for longitude,
latitude and altitude); and 3) the abstract notation should not depend on the context in which an element is used

but only on the element itself.

Prefer a layout which does not affect To simplify the usage of the DSL, the layout of the models does not affect the semantics. For example, modelers

Applied Computer Systems

2015/17 ___

76

Guideline Accomplishment

translation from concrete to abstract syntax can use tabs, spaces or line breaks whenever they want. However, PoiIDE provides the feature called a code

beautifier, also provided by some environments to automatically place the language elements in a way easily
understandable for most potential users.

Enable modularity [36]
It is possible to decompose the code into smaller files, referencing them from other files. However, for this small
language, we think that it is not necessary and it may unnecessarily increase the difficulty of use.

Introduce interfaces
Interfaces are an important feature in complex systems, increasing flexibility and maintenance. However, we do
not need them in our DSL because it is a simple declarative language.

TABLE III

PROVIDER USED IN THE CASE STUDY

Parameter Value

id provider1

name Madrid Tourist Office

description Tourist information about the city of Madrid in Spain

infoURL http://turismomadrid.es/en/

logoURL http://turismomadrid.es/en/templates/Turismo Madrid 2/images/logo turismo madrid.png

TABLE IV

POIS USED IN THE CASE STUDY

Parameter Value

POI 1

id poi1

provider provider1

name Santiago Bernabéu Stadium

description
The Estadio Santiago Bernabéu is an all-seater football stadium in Madrid, Spain. It was inaugurated on
December 14, 1947 and is owned by Real Madrid Club de Fútbol. It has a current capacity of 81,044 spectators.

location −3.68835, 40.45306

infoURL http://www.realmadrid.com/

iconURL http://www.realmadrid.com/StaticFiles/RealMadridResponsive/images/header logo.png

phone +34 913984300

email atencionpublico@corp.realmadrid.com

address Av. de Concha Espina, 1, 28036 Madrid

POI 2

id poi2

provider provider1

name Parque Warner Madrid

description
Parque Warner Madrid is a theme park located 25 km southeast of Madrid, Spain, in the municipality of San
Martín de la Vega.

location −3.59406, 40.23217

infoURL http://www.parquewarner.com/

iconURL http://www.parquewarner.com/sites/all/themes/custom/WAR theme/logo.png

phone +34 902024100

email atencionalcliente@parquewarner.com

address M-301, Km 15.5, 28330 San Martín de la Vega, Madrid

POI 3

id poi3

provider provider1

name Royal Palace

description
Home to the Kings of Spain from Charles III to Alfonso XIII, Madrid’s Royal Palace takes us on a journey.
through the history of Spain

location −3.714302, 40.417974

infoURL http://www.patrimonionacional.es/real-sitio/palacios/6039

phone +34 91 454 88 00

Applied Computer Systems

 ___ 2015/17

77

Parameter Value

email info@patrimonionacional.es

address Calle Bailén , s/n, Madrid

POI 4

id poi4

provider provider1

name Plaza Mayor

description
This portico lined square is situated at the heart of Hapsburg Madrid, the old part of the city and one of the
capitals most charming districts.

location −3.707398, 40.415364

address Plaza Mayor, Madrid

POI 5

id poi5

provider provider1

name El Retiro Park

description
This green oasis in the center of Madrid has 125 hectares and is home to over 15,000 trees. From the botanical
point of view, the Park includes some very important gardens.

location −3.68278, 40.4173

address Plaza de la Independencia, 7, Madrid

REFERENCES

[1] Chan, P., Dinniwell, R., Haider, M.A., Cho, Y.-B., et al. “Inter- and

intrafractional tumor and organ movement in patients with cervical
cancer undergoing radiotherapy: A cinematic-mri point-of-interest

study,” Int. J. of Radiation Oncology*Biology*Physics, vol. 70, issue 5,

pp. 1507–1515, 2008. http://dx.doi.org/10.1016/j.ijrobp.2007.08.055
[2] Erdelj, M., Loscri, V., Natalizio, E., Razafindralambo, T., “Multiple

point of interest discovery and coverage with mobile wireless sensors,”
Ad Hoc Networks, vol. 11, issue 8, pp. 2288–2300, 2013.

http://dx.doi.org/10.1016/j.adhoc.2013.04.017

[3] Parkinson, B.W., Spilker, J.J., Global Positioning System: Theory and
Applications, Volume One, Vol. 1, AIAA, 1996.

http://dx.doi.org/10.2514/4.866395
[4] Star, J., Estes, J., Geographic information systems, prentice-Hall

Englewood Cliffs, 1990.

[5] Azuma, R.T., “A Survey of Augmented Reality,” Presence 6 (4), 1997,
pp. 355–385.

[6] Haklay, M., Weber, P., “OpenStreetMap: User-generated street maps,”
IEEE Pervasive Computing, vol. 7, issue 4, pp. 12–18, 2008.

http://dx.doi.org/10.1109/MPRV.2008.80

[7] Kent, S., “Model Driven Engineering,” in Proc. of the 3rd Int. Conf. on
Integrated Formal Methods, IFM ’02, Springer-Verlag, London, UK,

pp. 286–298, 2002. http://dx.doi.org/10.1007/3-540-47884-1_16
[8] García-Díaz, V., Fernández-Fernández, H., Palacios-González, E., et al.,

“Talisman MDE: Mixing MDE principles,” J. of Systems and Software,

vol. 83, issue 7, pp. 1179–1191, 2010.
http://dx.doi.org/10.1016/j.jss.2010.01.010

[9] Miller, J., Mukerji, J., Belaunde, M., et al., Mda guide, v1.0.1, Tech.
rep., Object Management Group, 2003, [Online]. Available:

http://www.omg.org/docs/omg/03-06-01.pdf.

[10] Van Deursen, A., Klint, P., Visser, J., “Domain-specific languages: An
annotated Bibliography,” ACM Sigplan Notices, vol. 35, issue 6, pp. 26–

36, 2000.
[11] Asnina, E., Osis, J., „Topological Functioning Model as a CIM-Business

Model,” in Model-Driven Domain Analysis and Software Development:

Architectures and Functions. IGI Global, Hershey - New York, 2011,
pp. 40–64. http://dx.doi.org/10.4018/978-1-61692-874-2.ch003

[12] Osis, J., Asnina, E., „Derivation of Use Cases from the Topological
Computation Independent Business Model.” in Model-Driven Domain

Analysis and Software Development: Architectures and Functions. IGI

Global, Hershey - New York, 2011, pp. 65–89.
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004

[13] TomTom, Tomtom navigator sdk version 3.0 build 193, Tech. rep. 2004.
[Online]. Available: http://www.tomtom.com/lib/doc/ttnavsdk3-

manual.pdf

[14] Cerf, V. G., “Ascii format for network interchange”.

[15] Nolan, D., Lang, D.T., “Javascript object notation,” in XML and Web
Technologies for Data Sciences with R, Springer, pp. 227–253, 2014.

http://dx.doi.org/10.1007/978-1-4614-7900-0_7
[16] Wilson, T., Ogc keyhole markup language, 2.2.0, Open GIS Consortium.

[17] Hill, A., MacIntyre, B., Gandy, M., Davidson, B., Rouzati, H., “Kharma:

An open kml/html architecture for mobile augmented reality
applications,” in 9th IEEE International Symposium on Mixed and

Augmented Reality, ISMAR, IEEE, pp. 233–234, 2010.
http://dx.doi.org/10.1109/ISMAR.2010.5643583

[18] Lechner, M., Tripp, M., “ARML – an augmented reality standard,”

Tech. rep., Mobilizy GmbH, 2010.
[19] Madden, L., Professional augmented reality browsers for smartphones:

programming for junaio, layar and wikitude, John Wiley & Sons, Inc.,
2011.

[20] Mernik, M., Heering, J., Sloane, A.M., “When and how to develop

domain-specific languages,” ACM Comput. Surv., vol. 37, issue 4,
pp. 316–344, 2005. http://doi.acm.org/10.1145/1118890.1118892

[21] Schmid, K., Verlage, M., The economic impact of product line adoption

and evolution, IEEE Software, vol. 19, issue 4, pp. 50–57, 2002.
http://dx.doi.org/10.1109/MS.2002.1020287

[22] Nardi, B.A., A Small Matter of Programming: Perspectives on End User
Computing, MIT Press, Cambridge, MA, USA, 1993.

[23] Voelter, M., “A catalog of patterns for program generation,” in Euro-

PloP2003, 8th European Conf. on Pattern Languages of Programs,
2003.

[24] Efftinge, S., Voelter, M., oAW xText: A framework for textual dsls, in:
Workshop on Modeling Symposium at Eclipse Summit, vol. 32, 2006.

[25] Eysholdt, M., Behrens, H., “Xtext: implement your language faster than

the quick and dirty way,” in Proc. of the ACM int. conf. companion on

Object oriented programming systems languages and applications

companion, ACM, pp. 307–309, 2010.
http://dx.doi.org/10.1145/1869542.1869625

[26] Des Rivieres, J., Wiegand, J., “Eclipse: A platform for integrating

development tools,” IBM Systems Journal, vol. 43, issue 2, pp. 371–383,
2004. http://dx.doi.org/10.1147/sj.432.0371

[27] Parr, T.J., Quong, R.W., “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, issue 7, pp. 789–810, 1995.

http://dx.doi.org/10.1002/spe.4380250705

[28] Bettini, L., Implementing Domain-Specific Languages with Xtext and
Xtend, Packt Publishing Ltd., 2013.

[29] Steinberg, D., Budinsky, F., Paternostro, M., Merks, E., EMF: Eclipse
Modeling Framework 2.0, Addison-Wesley Professional, 2009.

[30] Gronback, R.C., Eclipse Modeling Project: A Domain-specific

Language Toolkit: A Domain-Specific Language (DSL) Toolkit, 1st ed.,
Addison-Wesley Educational Publishers Inc., 2009.

http://dx.doi.org/10.1016/j.ijrobp.2007.08.055
http://dx.doi.org/10.1016/j.adhoc.2013.04.017
http://dx.doi.org/10.2514/4.866395
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1007/3-540-47884-1_16
http://dx.doi.org/10.1016/j.jss.2010.01.010
http://dx.doi.org/10.4018/978-1-61692-874-2.ch003
http://dx.doi.org/10.4018/978-1-61692-874-2.ch004
http://dx.doi.org/10.1007/978-1-4614-7900-0_7
http://dx.doi.org/10.1109/ISMAR.2010.5643583
http://doi.acm.org/10.1145/1118890.1118892
http://dx.doi.org/10.1109/MS.2002.1020287
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1147/sj.432.0371
http://dx.doi.org/10.1002/spe.4380250705

Applied Computer Systems

2015/17 ___

78

[31] Karsai, G., Krahn, H., Pinkernell, C., et al., “Design Guidelines for

Domain Specific Languages,” in 9th OOPSLA Workshop on Domain-

Specific Modeling, 2009. [Online]. Available:
http://www.dsmforum.org/events/DSM09/Papers/Karsai.pdf

[32] Meyer, B., Eiffel: The Language, Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1992.

[33] Groenniger, H., Krahn, H., Rumpe, B., Schindler, M., Voelkel, S.,

Textbased modeling, in: In: 4th InternationalWorkshop on Software
Language Engineering, 2007.

[34] Wile, D., “Lessons learned from real dsl experiments,” Sci. Comput.
Program. vol. 51, issue 3, pp. 265–290, 2004. [Online]. Available:

http://dx.doi.org/10.1016/j.scico.2003.12.006

[35] Scowen, R., Wichmann, B.A., “The definition of comments in
programming languages,” Software: Practice and Experience, vol. 4,

issue 2, pp. 181–188, 1974. http://dx.doi.org/10.1002/spe.4380040211
[36] Wong, S., Cai, Y., Kim, M., Dalton, M., “Detecting software modularity

violations,” in Proc. of the 33rd Int. Conference on Software

Engineering, ACM, 2011, pp. 411–420.
http://dx.doi.org/10.1145/1985793.1985850

[37] Asnina, E., Osis, J., “Computation Independent Models: Bridging

Problem and Solution Domains,” in J. Osis, O. Nikiforova (Eds.).

Model-Driven Architecture and Modeling Theory-Driven Development:

ENASE 2010, 2ndMDA&MTDD Whs., SciTePress, Portugal, 2010, pp.
23–32.

[38] Osis, J., Asnina, E., “Is Modeling a Treatment for the Weakness of
Software Engineering?” in Model-Driven Domain Analysis and Software

Development: Architectures and Functions. IGI Global, Hershey - New

York, 2011, pp. 1–14. http://dx.doi.org/10.4018/978-1-61692-874-
2.ch001

[39] Donins, U., Osis, J., Slihte, A., Asnina, E. and Gulbis, B., “Towards the
Refinement of Topological Class Diagram as a Platform Independent

Model,” in J. Osis, O. Nikiforova (eds.). Model-Driven Architecture

and Modeling-Driven Software Development: ENASE 2011, 3rd Whs.
MDA&MDSD, SciTePress, Portugal, 2011, pp. 79–88.

[40] Osis, J., Asnina, E., Grave, A., “Formal Computation Independent Model
of the Problem Domain within the MDA,” Information Systems and

Formal Models, Proc. of the 10th Int. Conf., ISIM’07, Silesian University

in Opava, Czech Republic, 2007, pp. 47–54.
[41] Osis, J., Asnina, E., Grave, A., “MDA Oriented Computation

Independent Modeling of the Problem Domain,” Proc. of the 2nd Int.
Conf. on Evaluation of Novel Approaches to Software Engineering,

ENASE 2007, Barcelona, Spain, 2007, pp. 66–71.

[42] Osis, J., Asnina, E., “A Business Model to Make Software Development
Less Intuitive,” Proc. of the 2008 Int. Conf. on Innovation in Software

Engineering, Vienna, Austria. IEEE Computer Society CPS, Los
Alamitos, USA, 2008, pp. 1240–1246.

[43] Osis, J., Asnina, E., Grave, A., “Formal Problem Domain Modeling

within MDA,” in Communications in Computer and Information
Science, CCIS, vol. 22, Software and Data Technologies, Springer-

Verlag Berlin Heidelberg, 2008, pp. 387–398.
[44] Osis, J. and Asnina, E., “Topological Modeling for Model-Driven

Domain Analysis and Software Development: Functions and

Architectures,” in Model-Driven Domain Analysis and Software
Development: Architectures and Functions. IGI Global, Hershey - New

York, 2011, pp. 15–39. http://dx.doi.org/10.4018/978-1-61692-874-
2.ch002

Vicente García-Díaz is an Associate Professor at the Computer Science

Department of the University of Oviedo. He has a Doctoral Degree in

Computer Engineering from the University of Oviedo . His research interests
include model-driven engineering, domain-specific languages, technology for

learning and entertainment, project risk management, software development
processes and practices. He is a Specialist in Prevention of Occupational

Risks as well as a Certified Associate in Project Management through the

Project Management Institute.
Contact address is Computer Science Department, University of Oviedo

Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo
(Asturias, España).

E-mail: garciavicente@uniovi.es

Jordán Pascual Espada is a Research Scientist at the Computer Science

Department of the University of Oviedo. He has a Doctoral Degree in
Computer Engineering from the University of Oviedo, Bachelor Degree in

Computer Engineering and Master Degree in Web. He has published several

articles in international journals and conferences; he has participated in
several national research projects. His research interests include the Internet of

Things, exploration of new applications and associated human computer

interaction issues in ubiquitous computing and emerging technologies,

particularly mobile and web applications.

Contact address is Computer Science Department, University of Oviedo
Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo

(Asturias, España).
E-mail: pascualjordan@uniovi.es

B. Cristina Pelayo García-Bustelo is a Lecturer at the Computer Science
Department of the University of Oviedo. She has a Doctoral Degree in

Computer Engineering from the University of Oviedo. Her research interests
include object-oriented technology, web engineering, eGovernment, modeling

software with BPM, DSL and MDA.

Contact address is Computer Science Department, University of Oviedo
Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo

(Asturias, España).
E-mail: crispelayo@uniovi.es

Juan Manuel Cueva Lovelle became a Mining Engineer from Oviedo
Mining Engineers Technical School in 1983 (Oviedo University, Spain). He

has a Doctoral Degree from Madrid Polytechnic University, Spain (1990).
Since 1985 he has been a Professor in the languages and computer systems

area at Oviedo University (Spain), and an ACM and IEEE voting member. His

research interests include object-oriented technology, language processors,
human-computer interface, web engineering, modeling software with BPM,

DSL and MDA.
Contact address is Computer Science Department, University of Oviedo

Edificio de la Facultad de Ciencias. C/ Calvo Sotelo s/n. 33007 Oviedo

(Asturias, España).
E-mail: cueva@uniovi.es

Janis Osis is a Professor at the Faculty of Computer Science and Information

Technology, Riga Technical University, Latvia. He holds Dr,habil.sc.ing.

degree and is an honorary member of the Latvian Academy of Sciences. The
list of publications contains more than 250 titles, including 16 books. During

many years his main research interest was topological modeling of complex
systems. Recent fields of interests are object-oriented system development,

formal methods of software engineering, software development within the

framework of MDA by means of topological functioning model support.
Contact address is Department of Applied Computer Science, Riga Technical

University, Meža Street 1/3, Riga, LV-1048, Latvia.
Ee-mail: Janis.Osis@rtu.lv

http://dx.doi.org/10.1016/j.scico.2003.12.006
http://dx.doi.org/10.1002/spe.4380040211
http://dx.doi.org/10.1145/1985793.1985850
http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
http://dx.doi.org/10.4018/978-1-61692-874-2.ch001
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002
http://dx.doi.org/10.4018/978-1-61692-874-2.ch002

