
Applied Computer Systems

 ___ 2015/17

53

Models and Methods of Software Configuration

Management

Arturs Bartusevics 1, Leonids Novickis 2, Stefan Leye 3,
1, 2 Riga Technical University, Latvia, 3 Fraunhofer IFF Institute, Germany

Abstract – The paper provides collection of experience of

developing models and methods for implementation of software

configuration management process. Nowadays, during the age of

agility, startup of new software development projects is like an

explosion. Sometimes, in a few days a customer is willing to get

the first release, but formalized and reusable process for its

creating is not ready yet. Software configuration management

controls the evolution of software items and supports building

and deployment process for product releases. Models and

methods for implementation of software configuration

management are presented in the paper. Unlike other

approaches, the provided models and methods are related to

decrease software configuration management implementation

time in new projects. The paper provides a simplified use case to

illustrate practical application of the mentioned methods and

models.

Keywords – Model-driven approach, software configuration

management.

I. INTRODUCTION

Software configuration management is a discipline that

controls software evolution process [1], [2]. Sometime, based

on the above-mentioned definition, enterprises perceive

software configuration management only as version control

and source code management. In real software development

projects, the scope of software configuration management is

extended by different tasks, such as building and deployment

management, integration with bug tracking systems, release

management, integration with unit testing, continuous

integration etc. To apply the mentioned tasks of software

configuration management, enterprises use different tools, for

example, Subversion, Git, Mercurial for version control and

source code management, Jira for bug tracking, Jenkins,

Bamboo, Serena for continuous integration, building and

deployment management [3], [4] etc. Additionally, enterprises

apply scripts and custom tools to automate the mentioned

tasks and to integrate together different tools [3]. In the

context of this paper, ready software configuration

management process is an executable source code that

operates with different tools to apply and automate a set of

software configuration management tasks, such as version

control, source code management, building and deployment

management, release management, integration with

continuous integration, unit testing and many other tasks

related to software configuration management.

Usually enterprises have a vision about a set of tasks related

to software configuration management. Enterprises also have

tools, scripts and integration solutions to apply the mentioned

tasks of software configuration management. The main

challenge is how to implement existing tools, scripts and

solutions in a new software development project as soon as

possible. Sometimes, startup of new projects is like an

explosion. It means that in a few days customer is willing to

get the first version of product; however, the formalized and

reusable process is not ready. It causes a situation that we

called a “master factor”, when the first release could be

prepared from a local computer by a particular developer

using only his personal practical experience but not a

formalized and reusable process. It could be a reason of

unexpected errors in software builds and unstable releases in

production environments. Why is so much time required for

implementation of software configuration management

process in new projects? It is due to the fact that scripts and

tools existing in other projects of particular enterprises are

very specific for mentioned projects and not reusable. There is

a lack of formalized scientific approach on how to increase the

reusability level of existing solutions related to software

configuration management.

A. Problem Formulation

In the current paper the following problems are underlined:

• Lack of formalized and scientific approaches on how to

increase the reusability level of existing solutions of

software configuration management tasks;

• Lack of approaches defining a formalized way from

requirements of software configuration management to

implementation in the context of executable source code.

Paper [5] provides ideas that problems mentioned before

could be solved with a model-driven approach, because this

approach separates requirements from implementation for

particular platforms and gives a formalized way from

requirements to implementation and allows generating an

executable source code automatically. These options allow

reducing implementation time of software configuration

management that is the main challenge underlined in the

current paper. Tracy Ragan [5] in her paper states that during

huge improvement of cloud computing technologies, static

scripts cannot solve any tasks of software configuration

management, because paths, IP addresses are not known

absolutely. Paper [6] provides practical evidence of the

mentioned ideas: many model-driven tools are available to

automate tasks of software configuration management.

Usually, these tools relate only to building and deployment

management and do not support other software configuration

management tasks. Other disadvantage is that tools require

doi: 10.1515/acss-2015-0008

Applied Computer Systems

2015/17 ___

54

using a set of specific tools that could be unavailable or

unreliable for a particular enterprise.

B. Scientific Novelty of Paper

• Model-driven approach for implementation of software

configuration management. Unlike other approaches, this

one is intended to decrease implementation time using

existing tools and scripts that are trusted by a particular

enterprise, do not impose some specific tools related to

all tasks of software configuration management, not only

to building and deployment management.

• Three new models for representation of software

configuration management in the context of a new

approach.

C. Structure of the Paper

The current paper contains three main sections and

conclusions. The second section provides a brief introduction

of other studies related to implementation of software

configuration management by model-driven approaches. The

third section contains the description of the provided model-

driven approach, but the next one provides a simplified

example that illustrates practical application of the provided

approach, models and methods. Finally, conclusions and

directions for further researches are provided.

II. RELATED RESEARCH

The current paper is not the first attempt to provide software

configuration management as a complex process with multiple

tasks, not only version control or deployment management.

Study [3] provides an approach for integration of different

tools to solve tasks of software configuration management.

Authors [3] provide the ontology for definition of concepts of

each tool related to software configuration management. The

main advantage is strong formalism of the provided approach.

There is a lack of recommendations on ontology editors that

could be used for practical application of this approach. In

addition, there are no recommendations on how to apply

existing tools and scripts in the new approach.

Paper [4] provides an abstract model for complex software

configuration management tasks. It is a positive aspect that the

provided model is based on most popular quality standards

and frameworks such as CMMI and ITIL. Authors [4] say that

their research is at an initial stage and additional models

should be developed to reduce the level of abstraction. In

general, this study has the same disadvantage as [3]: there is a

lack of recommendations and methods how to apply existing

scripts, tools and solutions with the provided approach.

During development of a new model-driven approach

provided in the current paper, many ideas were taken from [3],

[4], [5] and [6]. From papers [3] and [4], the idea about

integration of different tools was taken. It was concluded that

a novel model-driven approach should describe many different

tasks of software configuration management, not only version

control or deployment management. Additionally, the new

approach should allow adding, modifying and deleting tasks of

software configuration management, because enterprises have

private vision about a set of tasks that should be implemented

with a software configuration management process.

The first results of new approach provided in the current

paper have been described in [10]. It has been really the first

attempt to describe software configuration management by

different models which are connected together by a strong

defined approach. Later, new models have been developed and

described in [9], [8] and [7]. New models have been tested by

practical experiments and lessons learned from the mentioned

experiments described in [11]. Based on comments of

reviewers of papers [9], [8] and [7] and practical results

provided in [11], a new version of model-driven approach for

software configuration management has been designed. New

approach has improved models for representing a software

configuration management process. Unlike previous related

studies [9], [8], [7], [11], the current version of approach has

the following differences:

• Model-driven approach is oriented to the complex

process of software configuration management. Tasks of

the mentioned process can be added and delated.

• The main scope of approach is increasing the reusability

level of existing tools, scripts and solutions that already

exist in a particular enterprise.

• Approach is aimed at decreasing the implementation time

of software configuration management in new projects.

• Approach provides a method of how to store existing

scripts and solutions to make them reusable.

III. APPROACH, MODELS AND METHODS OF SOFTWARE

CONFIGURATION MANAGEMENT

During improvement of work described in [9], [8], [7], [11],

the new approach has been designed for implementation of

software configuration management. Provided approach

expects that ready software configuration management process

is an executable source code that can apply different tasks of

the mentioned process. The approach requires that the

mentioned source code should be reusable and executed only

from a centralized software configuration management server.

Usually, enterprises use one of continuous integration servers

as a general software configuration management server, for

example, Jenkins, Bamboo, CruiseControl etc. New model-

driven approach provides generation of source code for

software configuration management using a set of models and

methods. General approach is illustrated in Fig. 1.

Applied Computer Systems

 ___ 2015/17

55

EAF methodology for imlementation of Software Configuration Management

Software Cofiguration Management In Particular
Project

Enterprise

Solution
Database

EAF Implementation Process
«Environment -> Action -> Framework»

PIEM
(Platform Independent Environment

Model)

CM
(Code Model)

SCM Server (Jenkins)

Source Code
(Executable by Jenkins Jobs)

Implementation

Configuration
Manager

Configuration
Manager

DEV TEST

test_delivery

DEV_TO_TEST

Actions:

getRevisions()
buildExecutable()

deployExecutable()
refreshRevisions()
sendNotifications()

Implemented
By View

Has Job

Has Actions

 Project Project

BuildServerJobsBuildServerJobs

FrameworksFrameworks

test_deliverytest_delivery
dev_to_test.sh

subversion_variables.sh

subversion_functions.sh

Reference

Transformation

Linux_shellLinux_shell SUBVERSION SUBVERSION

Platform 1
Platform 2
Platform 3

Framework 1
Framework 2
Framework 3

Algorithms for
Actions:

getRevisions()
refreshRevisions()

Reusable functions:
subversion_functions.sh

Environment variables:
subversion_variables.sh

Contains
Structure

PSAM (Platform Specific Action Model)

Project

test_delivery

DEV_TO_TEST

Frameworks

Actions:
getRevisions()

buildExecutable()
deployExecutable()
refreshRevisions()

sendNotifications()

SUBVERSION
<Frameworks 2>

<...>

<...>

<...>

<Frameworks 2>

<Frameworks 2>

subversion_variables.sh

subversion_functions.sh

Transformation

Choose
Frameworks

For
Actions

Fig. 1. Model-driven approach for implementation of software configuration management.

The provided approach illustrated in Fig. 1 contains three

parts:

• Software configuration management process in a

particular project. The process is a software

configuration management server (SCM Server) and a

source code (Source Code) for implementation of all

software configuration management tasks in a particular

project.

• Solution Database. Centralized database in a particular

enterprise where all executable source code fragments for

software configuration management tasks are stored.

Database should be designed by a special method,

provided by the current approach. At least one

configuration manager should manage this database to

add, modify or remove executable and reusable source

code units for particular tasks of software configuration

management.

• Implementation process. The main scope of this process

is generation of source code for software configuration

management using special models and Solution

Database. Implementation process contains three models:

o PIEM (Platform Independent Environment Model). This

model represents all environments and actions needed

to move software changes from one environment to the

other. Environment in the context of this approach is a

set of infrastructure, for example, database servers,

application servers, firewalls, other dependent tools, in

other word, all that needs to run software. Usually,

software development projects have many

environments with different scope, for example, DEV

for development, TEST for testing and PROD for

exploitation or production.

o PSAM (Platform Specific Action Model). This is

extended variant of PIEM model provided

implementation details about actions described in a

platform independent environment model. The model

has two parts. The first part (marked with a green box

in Fig. 1) represents the structure of actions needed to

move software changes between environments. This

structure should be copied from the PIEM model

without any modifications. The second part (marked

with a red box in Fig. 1) represents the frameworks

needed for implementation of the mentioned actions.

Frameworks should be chosen from the Solution

Database by a configuration manager. Each job with

actions has references for reusable functions of

Applied Computer Systems

2015/17 ___

56

particular frameworks and environment variables

needed to implement framework in a software

configuration management server.

o CM (Code Model). This model represents a structure of

source code files and folders that implement a

particular platform specific action model according to

rules of platform and special programming language (in

Fig. 1, an example with Linux Shell scripts is given).

Code model should be generated automatically from a

particular PSAM model. Then it could be implemented

as a source code in a particular software configuration

management server.

Provided approach (Fig. 1) is called EAF (Environment ->

Actions -> Framework). This name illustrates the process of

generation of a source code. Firstly, Environments should be

defined. Secondly, Actions should be specified to move

software changes between defined environments. Finally,

Frameworks should be selected from the Solution Database to

implement the mentioned actions in a particular platform.

IV. SOLUTION DATABASE

Solution Database is a warehouse where all executable

source code units for tasks of software configuration

management are stored. Solution Database should be designed

by the method provided in the EAF approach. Fig. 2 provides

the structure of Solution Database with an example for Linux

platform and SUBVERSION framework, which works with

the Subversion version control system.

Fig. 2. Solution Database.

The structure of Solution Database provided in Fig. 2

contains all executable source code units for actions of

software configuration management. The method of grouping

mentioned solutions contains the following steps:

• Detect platform where a code unit should be executed.

Fig. 2 contains an example for Linux platform.

• In the context of a particular platform, all units should be

grouped by a framework. Framework in the context of

this method is some tool or system with particular

functions that could be called from external tools. Fig. 2

provides the SUBVERSION framework as an example.

• Each framework should be fulfilled with three main

attributes:

o Algorithms for actions of software configuration

management. SUBVERSION framework provided in

Fig. 2 contains algorithms for actions getRevisions()

and refreshRevisions(). It means that the

SUBVERSION framework could be used to implement

actions getRevisions() and refreshRevisions() from the

PIEM model.

o Reusable functions, which could be called during using a

particular framework. In other words, this is an

interface that provides information ‘What particular

framework can do’. These functions should be

parameterized: receive a set of parameters and return

an expected result or error message. No values related

to specific software development project should be

hardcoded in the function body. In the context of Linux

Shell scripts, all functions of SUBVERSION

framework are stored in the script

subversion_function.sh (Fig. 2).

o Variables needed for implementation of a particular

framework in a software configuration management

server. They could be paths of tools needed for

framework, environment variables, directories etc. For

example, for the SUBVERSION framework variables

could be paths of Subversion command line client,

JAVA_HOME environment variable etc. In case of

SUBVERSION framework, all such variables are

stored in the script subversion_variables.sh (Fig. 2).

V. USE CASE FOR APPLICATION OF EAF MODELS AND

METHODS

To illustrate practical application of provided models and

methods, simplified software configuration management has

been defined. There are two environments: DEV and TEST.

Developers work with the DEV environment to develop new

changes of some software based on JAVA technologies.

Completed changes of the mentioned software should be

saved in the Subversion repository, which is a system of

version control and source code management in the described

project. Software configuration management process should

move changes from the DEV environment to the TEST

environment. The scope of TEST environment is testing new

functionality of software. Configuration manager has defined

the following tasks of software configuration management to

move changes between the mentioned environments:

• getNewRevisions(): detects ID of changes which are

saved in the Subversion system, but are not delivered to

the TEST environment.

• prepareBaseline(): merges changes detected during a

previous action from the DEV baseline to the TEST

baseline.

• makeBuild(): makes software build from the refreshed

source code baseline of TEST environment.

Linux_shellLinux_shell SUBVERSION SUBVERSION

Platform 1
Platform 2
Platform 3

Framework 1
Framework 2
Framework 3

Algorithms for
Actions:

getRevisions()
refreshRevisions()

Reusable functions:
subversion_functions.sh

Environment variables:
subversion_variables.sh

Applied Computer Systems

 ___ 2015/17

57

• installBuild(): installs the prepared build to the TEST

environment.

• updateRevisions(): marks particular revisions in the

Subversion system as ‘delivered to the TEST

environment’.

• sendNotification(): sends e-mails to testers of current

project to inform that a new version of software is

available from the TEST environment.

Software configuration management process with the

mentioned actions should be reusable. Process should be

implemented in Jenkins server by one job. Jenkins server is

installed on Linux platform. The main task of application of

EAF methodology is generation of a source code for the

mentioned Jenkins job. Fig. 3 provides an overview of PIEM

and CM models and connections between models and

structure of views in Jenkins server.

DEV TESTMove

test_delivery
DEV_TO_TEST

Implements

Has job

Actions
getNewRevisions()
prepareBaseline()

makeBuild()
installBuild()

updateRevisions()
sendNotification()

Has actions

ProjexXProjexX

dev_to_test.sh
BuildServerJobsBuildServerJobs test_deliverytest_delivery

subversion_variables.sh

FrameworksFrameworks SUBVERSIONSUBVERSION
Reference to

subversion_functions.sh

Connections in one model Connections between different models

Fig. 3. Implementation of software configuration management by the EAF.

Fig. 3 demonstrates that the structure of views and jobs in

Jenkins server is designed according to the structure of actions

in the PIEM model. Jenkins server contains one view called

“test_delivery” and one job called “DEV_TO_TEST”. This

job is implemented by a Code Model which contains script

“dev_to_test.sh”. Each execution of job “DEV_TO_TEST”

will call the mentioned script. Script “dev_to_test.sh” contains

algorithms for each action defined in the PIEM model and

described before. Algorithms are selected by a configuration

manager from the Solution Database. Code Model provided in

Fig. 3 contains an example for the SUBVERSION framework,

which implements the following actions: getNewRevisions(),

prepareBaseline() and updateRevisions(). Other actions from

the PIEM model are implemented by other frameworks and

implementations are not represented in Fig. 3. Script

“dev_to_test.sh” contains the reference to script with the

Subversion reusable function (subversion_functions.sh) and

the reference to script with Subversion variables

(subversion_variables.sh). Mentioned references in script

“dev_to_test.sh” are provided in Fig. 4.

Fig. 4. References to the SUBVERSION framework.

Example of the SUBVERSION function “SVN_MERGE”,

which merges particular Subversion revisions from one source

code branch to the other, is provided in Fig. 5.

Applied Computer Systems

2015/17 ___

58

Fig. 5. Example of the Subversion function.

Algorithms for actions from the PIEM model are also taken

from the Solution Database. Fig. 6 provides a source code

fragment of script “dev_to_test.sh” representing an algorithm

for action prepare Baseline (). Algorithm uses two functions

from the SUBVERSION framework: SVN_MERGE and

SVN_COMMIT.

Fig. 6. Algorithm of action prepareBaseline() in script “dev_to_test.sh”.

Figs. 3–6 show that a source code for software

configuration management process described in the current

section is generated automatically by the EAF approach using

the Solution Database, PIEM, PSAM and CM models. Only

variables specific for a particular project should be defined in

the Code Model to implement it in Jenkins server. No function

or algorithm should be developed from scratch. The example

described in the current section shows that the EAF approach

with related models can help to decrease implementation time

using existing tools, frameworks and executable source code

units.

VI. CONCLUSION

The study provides a new model-driven approach for

implementation of software configuration management. The

main scope is to increase reuse of existing solutions and to

reduce efforts to implement the process in other projects.

Meta-models for the Platform Independent Environment

Model, Platform Specific Action Model and Code Model are

designed as an implementation example of the provided

approach. In addition, a use case for designed models is given.

Finally, differences from other approaches are underlined.

In order to continue research, it is necessary to carry out the

following activities:

Applied Computer Systems

 ___ 2015/17

59

• With the help of experiment, to develop criteria that

evaluate model benefits in software development

projects;

• Based on the developed criteria, to evaluate benefits of

designed models;

• To develop criteria in order to assess whether the

developed model-driven approach for configuration

management implementation corresponds to guidelines

of ISO/IEC 15504, ITIL and CMMI standards;

• To design Code Models and transformation algorithms

for other platforms;

• To add and improve tools and frameworks in existing

platforms.

The approach provided in this article is abstract and only

general stages, kinds of models and basic elements are

defined. The authors hope that the new approach will generate

new ideas because many useful lessons can be learned from

different implementations of this model-driven approach.

ACKNOWLEDGEMENT

The research has been partly supported by the project

eINTERASIA “ICT Transfer Concept for Adaptation,

Dissemination and Local Exploitation of European Research

Results in Central Asian Countries”, grant agreement No.

600680 of the Seventh Framework Program Theme ICT–

9.10.3: International Partnership Building and Support to

Dialogues for Specific International Cooperation Actions –

CP-SICA-INFSO.

REFERENCES

[1] Aiello, R., Configuration Management Best Practices: Practical

Methods that Work in the Real World, 1st ed., Addison-Wesley, 2010.

[2] Berczuk, A., Software Configuration Management Patterns: Effective
TeamWork, Practical Integration, 1st ed., Addison-Wesley, 2003.

[3] Calhau R. and Falbo R., “A Configuration Management Task Ontology

for Semantic Integration,” in Proc. of the 27th Annual ACM Symp. on
Applied Computing, ACM New York, NY, USA, pp. 348–353, 2012.

http://dx.doi.org/10.1145/2245276.2245344
[4] Giese, H., Seibel, A. and Vogel, T., A Model-Driven Configuration

Management System for Advanced IT Service Management. [Online].

Available: http://www.hpi.unipotsdam.de/giese/gforge/publications/pdf/
GSV-MRT09_paper_7.pdf, 2009.

[5] Ragan, T., “21st-Century DevOps--an End to the 20th-Century Practice
of Writing Static Build and Deploy Scripts,” Linux Journal, vol. 2013,

issue 230, pp. 116–120. Accessed on: Oct. 22, 2014.

[6] Azoff, M., DevOps: Advances in Release Management and Automation.
[Online]. Available: http://electric-cloud.com/wp-content/

uploads/2014/06/EC-IAR_Ovum-DevOps.pdf, 2014.

[7] Bartusevics, A. and Novickis, L., “Model-based Approach for

Implementation of Software Configuration Management Process,” in

MODELSWARD 2015: Proc. of the 3rd Int. Conf. on Model-Driven
Engineering and Software Development, France, Angers, Feb. 9–11,

2015. Lisbon: SciTePress, 2015, pp. 177–184. ISBN 978-989-758-083-
3.

[8] Bartusevics, A., Novickis, L. and Lesovskis, A., “Model-Driven

Software Configuration Management and Semantic Web in Applied
Software Development,” in Recent Advances in Telecommunications,

Informatics and Educational Technologies: Proc. of the 13th Int. Conf.
on Telecommunications and Informatics, TELE-INFO '14, Turkey,

Istambul, Dec. 15–17, 2014. Istambul: WSEAS Press, 2014, pp. 108–

116. ISBN 978-1-61804-262-0.
[9] Bartusevics, A. and Novickis, L. “Model-Driven Software Configuration

Management and Environment Model,” in Recent Advances in Electrical
and Electronic Engineering: Proc. of the 3rd Int. Conf. on Systems,

Communications, Computers and Applications, CSCCA"14, Italy,

Florence, Nov. 22–24, 2014. Florence: WSEAS Press, 2014, pp. 132–
140. ISBN 978-960-474-399-5, ISSN 1790-5117.

[10] Bartusevics, A., Novickis, L. and Bluemel, E., “Intellectual Model-

Based Configuration Management Conception,” Applied Computer

Systems, vol. 15, 2014, pp. 22–27. ISSN 2255-8683. e-ISSN 2255-8691.

http://dx.doi.org/10.2478/acss-2014-0003
[11] Bartusevics, A., Novickis, L. and Leye, S., “Implementation of Software

Configuration Management Process by Models: Practical Experiments
and Learned Lessons,” Applied Computer Systems, vol. 16, 2014, pp.

26–32. ISSN 2255-8683. e-ISSN 2255-8691.

http://dx.doi.org/10.1515/acss-2014-0010

Arturs Bartusevics currently is a Doctoral Student at Riga Technical
University, the Faculty of Computer Science and Information Technology, the

Institute of Applied Computer Systems. He obtained Bachelor (2008) and

Master (2011) degrees in Computer Science and Information Technology,
respectively, from Riga Technical University. His research areas are software

configuration management, release building and management process and its
optimization. He works at Ltd. Tieto Latvia as a Software Configuration

Manager.

E-mail: arturik16@inbox.lv

Leonids Novickis is the Head of the Division of Software Engineering. He
obtained Dr.sc.ing. degree in 1980 and Dr. habil. sc. ing. degree in 1990 from

the Latvian Academy of Sciences. Since 1994, he has been regularly involved

in different EU-funded projects: AMCAI (INCO COPERNICUS, 1995–1997) –
WP leader; DAMAC-HP (INCO2, 1998–2000), BALTPORTS-IT (FP5,

2001–2003), eLOGMAR-M (FP6, 2004–2006) – scientific coordinator;
IST4Balt (FP6, 2004–2007), UNITE (FP6, 2006–2008) and BONITA

(INTERREG, 2008–2012) – RTU coordinator; LOGIS, LOGIS-Mobile and

SocSimNet (Leonardo da Vinci) – partner. He was an independent expert of
IST and Research for SMEs in FP6, FP7. He is a corresponding member of

the Latvian Academy of Sciences. His research fields include applied software
system development, business process modelling, eLogistics, international

cooperation, web-based applications. He is the coordinator of FP7

eINTERASIA project.
E-mail: lnovickis@gmail.com

Stefan Leye holds a Diploma in Mechanical Engineering (2011). Primary

field of study – integrated product development. Currently he works at the

Fraunhofer Institute for Factory Operation and Automation IFF, Magdeburg –
Germany, as a Project Manager at the business unit Virtual Interactive Training.

Main field of research: Virtual Reality and Digital Engineering solutions for
product development and training. Address: Sandtorstrasse 22, 39106

Magdeburg, Germany, Phone: +49 391 4090 114, Fax: +49 391 4090 115.

E-mail: stefan.leye@iff.fraunhofer.de

http://dx.doi.org/10.1145/2245276.2245344
http://dx.doi.org/10.2478/acss-2014-0003
http://dx.doi.org/10.1515/acss-2014-0010

