
Applied Computer Systems

2014/16 ___

92

State Synchronization Approaches in Web-based

Applications

Aleksejs Grocevs1, Natalya Prokofyeva2, Stefan Leye3,
1–2Riga Technical University, Latvia, 3Fraunhofer Institute for Factory Operation and Automation IFF, Germany

Abstract – The main objective of the article is to provide

insight into technologies and approaches available to maintain

consistent state on both client and server sides. The article

describes basic RIA application state persistence difficulties and

offers approaches to overcoming such problems using

asynchronous data transmission synchronization channels and

other user-available browser abilities.

Keywords – Persistence, state, synchronization, web application.

I. INTRODUCTION

Nowadays many applications and tools are moving towards

high-availability platforms, transferring services to a web

environment. Such services, called RIA (Rich Internet

Application), provide opportunities similar to the desktop-

based solutions. Usually RIA consists of domain-specific

environment and serves as a tool to ease required task

performance on it. However, there are many Internet-specific

problems that companies are trying to work out. One of these

is application state synchronization across multiple application

instances or even across single Internet browser restarts/page

refreshes [1]–[3].

II. PROBLEM DEFINITION

Rich Internet applications usually contain many inputs,

fields, drawings and other stateful elements, which can be

altered or reversed to their original values by page reloading.

Such alteration may cause changed information loss and will

require to repeat all user actions leading to its exasperation

and time waste. Similarly user-supplied data could be invalid

or misconfigured; applications can incorrectly process

those\these values, causing error notification and being unable

to give a possibility to update and fix the data entered.

In client-side architecture (software development approach,

where program that receives user input, e.g., browser,

performs a lot of work and data preparation before sending it

to a server, therefore reducing server workload and providing

more responsive interface to an end-user), there are two places

where data could be saved – either on a server remotely or on

a client local computer. In case of multi-user environment,

where multiple users work with the same information

simultaneously, saving intermediate data on a client side could

lead to data inconsistency and further partial data loss. Since

that data should be merged with main information part on a

server sooner or later, the sooner the data entered is uploaded

to a central server-side storage, the better.

To synchronize data, which is already persisted on a client

side with a server, browsers could use asynchronous calls like

AJAX or web-workers, but if data loss is acceptable – you just

wait until a user submits any form and attach the data required

to form a request in hidden field(s). Multiple studies have

already addressed this issue [4], the article does not only

contain possible solution descriptions, but also provides

comparison and recommendations suitable in particular cases.

Client-side storage type may vary based on RIA technology

stack and data amount. The most common technologies for

RIA development are HTML5 and Flex. Other plugin-based

solutions like Java applets, JavaFX, Silverlight etc. are also in

use, but much less frequently.

III. HTML AND JS-BASED APPLICATION DATA PERSISTENCE

Unlike previously mentioned technologies that require

additional plugins and user interaction with the browser,

JavaScript and HTML applications can work on virtually any

modern browser. To persist some data locally, JavaScript

provides several approaches to data retention between page

refreshes.

A. Cookies

“Cookie” is the oldest local information storage way that

has been accessible since the 1990s [5]. Modern browsers

allow for multiple cookies per domain and usually these limits

are 50 (Internet Explorer 8+) to 180 (Chrome 8+) or even 600

(Safari 5+) per browser session and from 4096 chars (IE,

Safari) to unlimited per domain. This allows JavaScript to

write and read data directly from cookies, which can be stored

for a month in advance. Browsers typically have an option to

overview stored cookies and an ability to remove unnecessary

ones. To interact with cookie contents, browsers provide

JavaScript document.cookie object, which contains all cookies

set for current domain and all sub-domains [6]. To add a

cookie, cookie string should be assigned directly to

document.cookie variable, e.g.:

document.cookie = "foo=bar"; // (1)
document.cookie = "cb1Checked=true; max-age=" +
(60*60*24) + "; path=/login"; // (2)

document.cookie = "cb1Checked=; expires=Thu, 01 Jan
1970 00:00:00 GMT; path=/news"; // (3)

In the first example, a cookie named “foo” is created or

replaced with a value of “bar”. Since other arguments are

omitted, a cookie will be automatically removed by a browser

at the end of the current session. The “session” here is an

doi: 10.1515/acss-2014-0018

Applied Computer Systems

 ___ 2014/16

93

TABLE I

WEB STORAGE AND COOKIE LIMITS IN MODERN BROWSERS

Browser and version
Web storage limit

per domain, MB
Cookie size in, bytes Cookie count per domain

Chrome 29 5 4096 180

Firefox 24 5 4096 150

Safari 4 5 4096 No limit

Opera 12 3 5117 60

Internet Explorer 10 10 5117 50

BlackBerry Browser 25* 1024 10

* – Storage limit per origin (each [sub-]domain separately)

opened browser window, so after the browser restarts, a

cookie will be erased.

In the second example, cookie “cb1Checked” is set to

logical “true” with expiration time of 86400 seconds; hence,

after 1 day the cookie becomes eligible for deletion. In

addition, path argument is supplied, specifying that the cookie

will be sent to a server only for pages under /login/* URI.

To remove a cookie earlier than the time limit specified in

max-age or expires argument, the third assignment could be

used. In this case, “cb1Checked” value is unset immediately

(so its value is “undefined”) and the whole cookie will be

deleted after the next page refresh.

B. HTML5 Web Storage

Web storage in browsers gives larger than cookies place to

store some data and to preserve it between page reloads. It is

typically 5 to 25MB per domain, including subdomains. The

comparison of overall default web storage and cookie data

storage limits is given in Table I. There are two types of

storage – localStorage and sessionStorage. As the name

implies, sessionStorage can hold data only during a single

browser session and after a browser restarts, its content is

erased. If developers need to persist data for a longer period of

time, localStorage could be used instead [7]. Both storages act

like key-value data structures, similarly to an associative

array. There are two main methods to retrieve and push

objects inside storage, getItem() and setItem(), respectively.

The following code demonstrates this approach:

var obj = localStorage.getItem("aboutText"); // (1)
sessionStorage.setItem("currentPage", 3); // (2)

In the first example, JavaScript will try to fetch a value for

“aboutText” key from local storage and assign it to variable

“obj”. If there were no object under such a key, the value of a

variable would be “undefined”.

In the second example, Number-type object will be written

to temporary, session storage under “currentPage” key. If there

were previous values – it would be lost and replaced with a new

one.

Storage specification for HTML5 defines no particular type

as value type for object persisting, but modern browsers are

capable to handle only String type. That means that the

following code will alert the text “"[object Object]"”:

localStorage.setItem("testObj", {key1:"value1"});
alert(localStorage.getItem("testObj"));

Despite the fact that the written object contains at least one

property called “key1”, resuming the pushed value is not more

than toString() call from the mentioned object.

To overcome this problem, it is possible to serialize objects

before they get pushed inside Storage and deserialize when

they are fetched from. The easiest way to transform JavaScript

object into a text is performing JSON.stringify() method call.

This object and method are available on modern browsers as

well as Storage object itself. Thus, calling stringify() before

setItem() and decoding JSoN object after retrieving it via

getItem() and before real application usage (e.g., by calling

eval() on the retrieved string. Fastest and less secure option)

provides an opportunity to operate with regular JavaScript

objects no matter what kind of object should be persisted.

Modern browsers have exception handlers and can handle

irregular situations during JavaScript code run. Since these are

runtime-type exceptions, unhandled exception (error) will halt

further code execution. Regarding storage operations,

developers usually implement QuotaExceededError handlers,

i.e., surrounding potential dangerous calls with try/catch blocks:

try {

 sessionStorage.setItem("data", someBigObject);
} catch (e) {
 alert("No free space to persist user data");

}

In this scenario, a large object will be pushed to storage, but

in case of overquoting an alert will be displayed to an end-user

to notify about a problem. Cookies, unlike storage elements,

would silently fail if total disk quota were exceeded.

Apart from larger data amount that can be persisted in

storage, it is also possible to add event listeners for user-data

saving and retrieving operations via set/getItem() calls. It is

possible to bind to “storage” event type and execute an

additional code for every storage changes that user-supplied

data write calls could produce. This event will be fired in any

other tab of same origin, excluding the original one, where

storage update was called. This is useful for client-only data

synchronization for applications that allow multiple

invocations and want to synchronize data between instances

without additional requests to a server.

Applied Computer Systems

2014/16 ___

94

C. IndexedDB

To overcome major storage pitfall – an impossibility to

fetch ranged results – another HTML5 technology is under

development – IndexedDB. Similar idea was implemented in

Web SQL Database engine, but W3C ceased further

specification development in 2010 [8].

IndexedDB provides asynchronous SQL-style queries to a

local database that is embedded into a browser. Queries can

also be wrapped inside transactions with rollback functionality

and onError callback. The basic pattern to work with

IndexedDB is as follows:

1. To initialize database connection and transaction;

2. To create a storage object (table);

3. To create a request;

4. To wait for request completion by using callback;

5. To process a request in callback.

It also possible to define indexes to improve retrieval

performance and to additionally enforce some data type

constraints, for example, by supplying {unique: true} index

constraint.

Although IndexedDB could be used for user UI (user

interface) state synchronization, it is impractical and too

expensive to implement such a system as a client-side

temporary storage engine.

IV. FLEX- AND FLASH-BASED APPLICATION DATA STORAGE

Usually Flex-based applications utilize persistent client-to-

server connection and transmit objects and calls using AMF3

protocol [9], [10]. In this case, it is easier and faster to send all

changes in UI immediately to a server rather than persisting

them locally and waiting for an appropriate moment for

synchronization. However, sometimes it is necessary to store

user data from inputs or any other information in between

application view transitions to restore that information back

when it is required.

To store data locally on Flash client plugin, Adobe has

implemented Local Storage, or Local shared objects. This

storage restricted up to 100KB space in default configuration,

where this restriction could be removed by a user and set to

Infinity.

Storage objects are very similar to HTTP cookies. Shared

objects are common for all Flash player instances in particular

origin, its value is immediately transferred and applied to all

instances as well.

To work with shared objects, SharedObject class is

provided by ActionScript 3 implementation. To request a

shared object from local storage, the following code can be

used:

public var mySO:SharedObject; // (1)

mySO = SharedObject.getLocal("preferences"); // (2)
mySO.data.field1 = "value1"; // (3)
mySO.flush(); // (4)

In the first line, the “mySO” variable of SharedObject type

represents shared object instance that is retrieved from local

storage or created in place if such a key in storage does not

exist. To actually populate a variable value with object

instance, there is call to fetch a local storage value for key

“preferences” in the second line. On line three, the field

updating process is shown, where a field value is indirectly

assigned by using a “data” parameter. Lastly, shared object

data in line four is flushed into persistent storage by calling

flush() method on shared object instance. Specification states

that explicit flush() call is not required though is desired to

circumvent insufficient storage space prompt. If there is no

free space left in storage, the method call returns

SharedObjectFlushStatus. PENDING states and displays

popup shown in Fig. 1.

If flush() method is not called immediately after data

change, then the Flash plugin tries to update the shared object

state in storage during plugin shutdown. This, however, can

lead to inability to notify an end-user about possible free space

issues due to plugin exit phase. Therefore, it is desirable to call

flush() straight after the shared object data has been changed.

Fig. 1. Additional storage space requirements dialog shown by Adobe Flash

plugin, providing information about current and requested storage data

amounts.

Since storage space expansion dialog has 213 px in width

and 136px in height, official guidelines suggests that SWF file

is at least 215 pixels wide and at least 138 pixels high to fully

show this modal dialog inside an application window.

V. SYNCHRONIZATION HANDLING USING SPRING WEB FLOW

Spring Web Flow is designed to guide an end-user through

a set of windows and prompts, providing an easy way to

generate wizards, surveys, shopping cart check-out processes

and other behavioral procedures that required a step-by-step

solution with a predetermined step order [11].

Main request handling flow in Spring Web Flow starts

within DispatcherServlet, which handles requests to all non-

static files, such as images, CSS styles, JS scripts etc.

DispatcherServlet transfers a request to FlowController,

Spring MVC component which selects appropriate

FlowExecutor to transfer the request to. FlowExecutor

proceeds the request, handles state transitions and passes data

further based on the information gathered from the request like

supplied parameters and session data. According to the

previously mentioned data, FlowExecutor selects the current

flow and figures out in which state it currently is.

FlowRegistry is the next component, being able to load, build

and maintain flow definitions and is used to retrieve the

corresponding flow data and state for FlowExecutor. To build

the flow, FlowBuilderService is called next in sequence. Its

Applied Computer Systems

 ___ 2014/16

95

goal is to prepare all required services to process the current

flow stage. UI/frontend elements are built together using

ViewFactoryCreator (or usually MvcViewFactoryCreator if

SpringMVC resolver is used) that is called from

FlowBuilderService to generate final HTML page using

ViewResolver mapper for physical resources, like JSP pages

or another templating engine [12].

To enable Spring Web Flow in spring.xml, the following

lines are required:

<flow:flow-executor id="flowExecutor" flow-
registry="flowRegistry"/>
<flow:flow-registry id="flowRegistry"

 flow-builder-services="flowBuilderServices">
 <flow:flow-location path="/WEB-INF/flow.xml"/>
</flow:flow-registry>

Both FlowExecutor and FlowRegistry elements are

supplied, as well as FlowBuilderService processor class. To

prepare flow definitions, flow.xml file should contain at least

view state and end-state information for proper execution

flow:
<view-state id="register"
view="account/registerForm">

 <transition on="submitReg" to="accountAdded"/>
 <transition on="cancelReg" to="cancelReg"/>
</view-state>

<end-state id="accountAdded"
view="externalRedirect:contextRelative:/home.do"/>

<end-state id="cancelReg"
view="externalRedirect:contextRelative:/home.do"/>

Since default Spring MVC InternalResourceViewResolver

is used, view account/registerForm will be resolved as a

physical file /WEB-INF/jsp/account/registerForm.jsp. The

example above contains two transitions and two possible end

states for a “register” flow. In both cases, these transitions lead

to one end state – status code 301 HTTP redirect to home.do

URI, located in context root. However, it is possible for

transitions to lead to other states (e.g., views).

To access the created web-flow, a user must start with

/register.do address relative to website root. After going

through transitions, his state/position in flow will be persisted

using Spring Web Flow internal request handlers. Such

handlers parse POST-request form elements and based on

${flowExecutionUrl}, _eventId and other supplied parameters

update user session information. Another approach to persist

and therefore synchronize data between two browser requests

is to utilize @SessionAttributes annotation in @Controller

mappings in Spring MVC. To apply SessionAttributes, the

following code can be used (surely getting information using

DAO (data access objects) directly from user supplied data

can compromise application security and preventive actions

such as input validation/sanitizing should be taken on

production environments):

@Controller
@SessionAttributes("cart")

public class CheckoutWizard {
 @RequestMapping("/step1")

 public String

checkoutForm(@RequestParam("cartId") int cartId,
ModelMap model) {
 ShoppingCart cart = cartDao.findOne(cartId);

 model.addAttribute("cart", cart);
 return "checkoutForm";
 }

}

In this example, all further steps will contain ShoppingCart

object as a session attribute and cartId argument will be

redundant. After saving object instance into model attribute

“cart”, RequestMapping-annotated method returns a mapping

name, which will be resolved by ViewResolver, whose values

could be populated from previously in-session saved state.

VI. COMPONENT STATE PERSISTENCE IN VAADIN

Vaadin is a popular Rich Internet Application framework,

which is capable to synchronize user changes in application in

real-time using AJAX background synchronization. In version

7.1, an asynchronous push was added to reduce network usage

for such requests. Vaadin provides many components with

empty onChange() methods that could be overridden and

called upon whenever element value or state is changed to

synchronize current UI behavior and data representation on a

client side with main repository data version on a server side

[13].

For example, the most used HTML element for text input is

<input>-type tag of type “text”. To construct this element in

Vaadin, the following code can be used:

PasswordField sample = new PasswordField();

sample.setImmediate(true);
sample.addTextChangeListener(new

TextChangeListener() {
 @Override
 public void textChange(TextChangeEvent event) {

 persistPassword(event.getText().length());
 }
});

Controls with “Immediate” flag will fire their *change()

events immediately after focus loss. Calling persistPassword()

method allows application to save temporary data about the

changed but not yet confirmed field value in session or any

other suitable storage. Additional types for synchronization

that can be set by setTextChangeEventMode() are as follows:

• TextChangeEventMode.LAZY – An event is triggered

when there is a pause in editing text. Pause length can be

set by setInputEventTimeout() call. Similarly to

TIMEOUT event mode, a text change event is forced to

be fired before ValueChangeEvent, regardless of user

character input flow;

• TextChangeEventMode.TIMEOUT – changes will be

delivered to server only after the specified time;

• TextChangeEventMode.EAGER – event is triggered

immediately after keypress or any other visual

component change. Since a synchronization process is

asynchronous, a user can continue typing without

interruption.

Applied Computer Systems

2014/16 ___

96

Using Vaadin there is no need to implement any additional

checks or logics for state synchronization on a client side [14].

If it is required, some of early mentioned client-side storages

such as Web Storage or cookies could be used as well to

provide redundant entered data persistence. That, however,

would lead to additional data consistency problems but in case

of Vaadin all data will be persisted in the order it arrives to a

server. It is a particular project and a developer’s task is to

implement more sophisticated conflict resolution algorithms to

avoid entered data collisions.

VII. CONCLUSION

Technologies and approaches described in the article

provide information about possible data preservation and

component/data synchronization opportunities between

multiple application reloads or across multiple application

instances. It is also possible to use multiple techniques at once,

for example Vaadin for UI rendering/data manipulation and

additional Flash shared objects as temporary local storage in

case of the Internet connection loss.

Cookies, Web Storage and IndexedDB are always available

for developers in modern browsers, so there is no need to

program additional support for the mentioned technologies. If

compatibility is a must – cookies should be used, since older

browsers lack Web Storage and IndexedDB support.

On the other hand, if it is more preferable to implement

synchronization as the part of existing web-solution, the

mentioned modern frameworks, Spring and Vaadin, are the

best choice since synchronization issues are handled internally

by framework, leaving only business tasks to be solved by a

developer.

By comparing local storage facilities, it has become clear

that old cookie technology is not capable to deal with long text

persisting and can be used only as a small character sequence

holder like HTTP session key or currently selected language at

a website. Besides, all cookies are sent to a server in every

request, so transferred data amount would appropriately

increase.

REFERENCES

[1] A. Bongio et al., Designing data-intensive Web applications,

Massachusetts: Morgan Kaufmann Publishers, 2003

[2] S. Salva, I. Rabhi, “Stateful Web Service Robustness” in ICIW, 2010
Fifth International Conference, 2010, pp. 167-173

[3] S. K. Beck, “Systems and methods for suspending and resuming of a

stateful web application,” U. S. Patent 7757239 B2, August 29, 2005.

[4] F. Bellucci et al., “Engineering JavaScript state persistence of web

applications migrating across multiple devices” in Proceedings of the

3rd ACM SIGCHI symposium on Engineering interactive computing
systems, 2011, pp. 105-110.

[5] IETF. (1996, May) Hypertext Transfer Protocol -- HTTP/1.0. [Online].
Available: http://tools.ietf.org/html/rfc1945.

[6] Ianixt. (2011, March) Browser Cookie Limits [Online]. Available:

http://browsercookielimits.x64.me/
[7] M. Mahemoff, (2010, October) Client-Side Storage - HTML5 Rocks

[Online] Available: http:// html5rocks.com/en/tutorials/offline/storage/.
[8] World Wide Web Consortium, (2010, November) Web SQL Database

[Online] Available: http://dev.w3.org/html5/webdatabase/

[9] C. Cao, J. Luo, Z. Qiu, “Technology of Application System Integration
Based on RIA” in International Conference CSIE 2011, Zhengzhou,

China, May 21-22, 2011. Proceedings, Part I: Springer Berlin
Heidelberg, 2011, pp. 55-60.

[10] M. Ayenson, et al., (2011, July) Flash Cookies and Privacy II: Now with

HTML5 and ETag Respawning. [Online] Available: http://ssrn.com/
abstract=1898390

[11] D. Maciej, W. Zabierowski. “Web-based content management system,”

in Modern Problems of Radio Engineering, Telecommunications and

Computer Science 2010 International Conference. June 2010.

[12] Willie Wheeler, (May 2008) Build a Shopping Cart With Spring Web
Flow 2. [Online]. Available: http://springinpractice.com/2008/

05/06/build-a-shopping-cart-with-spring-web-flow-2-part-2
[13] E. Duarte, L. Alejandro. Vaadin 7 UI Design by Example: Beginner's

Guide. Packt Publishing Ltd, 2013.

[14] J. L.Williams, Learning html5 game programming: A hands-on guide to
building online games using Canvas, SVG, and WebGL. Addison-

Wesley Professional, 2012.

Aleksejs Grocevs. Master of science and engineering (2010). Primary

field of study – high load web applications and modern technologies and
techniques for high load optimization.

He currently works at Ambergames, Riga as the Head of Research and
Development Department. Main research trends – internet-based application

data transmission optimization.

Address: Meža Str. 1/4 – 533, Riga; Phone: +37126803626;
Fax: +37167089571; E-mail: aleksejs.grocevs@rtu.lv

Natalya Prokofyeva. Dr. sc. ing. (2007). Position: Riga Technical

University, Computer Science and Information Technology Department,

Chair of Software Engineering, an Associate Professor.
The main field of research activities: E-learning systems (model, methods,

technologies), modern Internet technologies.
Address: Meža iela 1/4 – 533, Riga; Phone: +37129729846;

Fax.: +37167089571; E-mail: natalija.prokofjeva@rtu.lv

Stefan Leye. Diploma in Mechanical Engineering (2011). Primary field of

study – integrated product development.
He currently works at the Fraunhofer Institute for Factory Operation and

Automation IFF, Magdeburg – Germany, as a Project Manager of the

Business Unit Virtual Interactive Training. Main field of research: Virtual
reality and digital engineering solutions for product development and training.

Address: Sandtorstraße 22, 39106 Magdeburg, Germany;
Phone: +49 391 4090 114; Fax: +49 391 4090 115;

E-mail: stefan.leye@iff.fraunhofer.de

