
Applied Computer Systems

 ___ 2014/16

33

BrainTool v2.0 for Software Modeling in UML

Oksana Nikiforova1, Ludmila Kozacenko2, Dainis Ungurs3, Dace Ahilcenoka4, Andrejs Bajovs5, Nadezda Skindere6,

Konstantins Gusarovs7, Maris Jukss8, 1–7Riga Technical University, Latvia, 8McGill University, Canada

Abstract – It is a modern trend to develop a CASE tool for

system modeling with an ability to transform models defined in

different notations and also to generate a program code. Such a

system modeling tool tries to bridge the gap between the system

specification and the software components. A tool called

BrainTool has been developed for generation of the UML

diagrams from the initial presentation of problem domain by the

two-hemisphere model. The paper presents the main components

of BrainTool and compares it to other system modeling tools.

Keywords – BrainTool, system modeling tool, two-hemisphere

model, Unified Modeling Language (UML).

I. INTRODUCTION

Models play an important role in the development of

software systems. Currently, models and model

transformations are the central component in software

development and it is clear that the importance of models will

increase [1]. Models can be used to specify the system in a

graphical view, understandable to analysts, developers and

even customers. Usually, the system model is organized as a

set of diagrams, where specific notation is defined for each

diagram and regulates diagram syntax and semantics. System

models are abstractions that portray the essentials of a

complex problem or structure by filtering out non-essential

details, models make the problem easier to understand. Thus,

the systematic approach to derivation of the system model

from the information about the problem domain and the tool

supporting the automation of this process is strictly required.

Forester’s research [2] confirms that tools to support models

and modeling at the initial stage of software development are

the modern trend in business process modeling and analysis.

Therefore, the focus of the automation of software

development is shifted from automatic code generation to the

automatic modeling of the system itself.

The Unified Modeling Language (UML) [3] in this context

is used to model system specification and serve as a “bridge”

between the information about problem domain and the

information required for definition of software components

and their architecture. Currently, researchers are trying to

achieve a high enough level of automation in the creation of

the core UML diagrams and their derivation from information

about the problem domain. Moreover, an increasing number of

developers admit the necessity to model system at the initial

stage of the software development project, and the models are

increasingly used to specify the system and its processes at the

business level [2], [4].

Authors of the paper offer so called two-hemisphere model

driven approach [5] for the generation of the core UML

diagrams, namely, class and sequence diagram. The goal of

this paper is to present current research results achieved in the

transformation of the two-hemisphere model into the UML

diagrams and to introduce the tool supporting the approach.

The paper is structured as follows. The required

functionality and main components of the tool suitable for

system modeling and model transformation at the different

levels of abstraction are specified in Section II. The

components needed to implement such a tool are defined in

Section III, where they are expressed by the components of

BrainTool – the tool for the creation of the two-hemisphere

model, UML diagrams generation and export them to some

UML compatible tool. The authors analyse the variety of

modern system modelling and code generation tools and

define the position of BrainTool among them in Section IV. In

the conclusion the authors discuss the technical solutions and

lessons learned in solving the task of model transformation ant

its support by a tool and stress the necessity to elaborate the

area of tool development and model usage during software

development.

II. THE MAIN FUNCTIONS AND COMPONENTS OF A MODEL

TRANSFORMATION TOOL

Computer-Aided Software Engineering (CASE)

technologies are used in designing sophisticated tools to

automate the software development process as much as

possible. It is particularly useful where teams of engineers

who may not share the same physical space design major

software products. The goal of introducing CASE tools is the

reduction of the time and cost of software development and

the enhancement of the quality of the systems developed.

CASE tools can be divided in the following groups:

Requirement Analysis Tool, Structure Analysis Tool, Software

Design Tool, Code Generation Tool, Test Case Generation Tool,

Document Production Tool, and Reverse Engineering Tool [6].

According to [7], model transformation is the process of

converting one model to another model of the same system.

Tools should posses certain functionality to ensure their use

and success. In [8] necessary functionality of the

transformation tools is presented. One of the first is the ability

to perform create/read/update/delete operations. It means that

having the possibility to create new models and

transformations or update existing ones is an important

criterion to assess the “openness” or “extensibility” of a

dedicated transformation tool. Other functions are an ability to

suggest, when to apply transformations, and an ability to

guarantee correctness of the transformations. Transformations

should ensure syntactic correctness and semantic correctness

to guarantee that a target model produced by the

transformation is well formed.

doi: 10.1515/acss-2014-0011

Applied Computer Systems

2014/16 ___

34

Another function is an ability to deal with incomplete or

inconsistent models. It is important to be able to transform

models early in the software development life cycle, when

requirements may not yet be fully understood or described in a

natural language. An ability to test, validate and verify

transformations are useful to ensure that the transformations

are performed as desired. Tools that have an ability to specify

bidirectional transformations require fewer transformation

rules, since each transformation can be used in two different

directions: to transform the source model into the target

model, and to perform the inverse transformation, i.e. to

transform the target model into the source model.

The final function from the list [8] is support for traceability

and change propagation. To support traceability, the

transformation tool needs to provide mechanisms to maintain

an explicit link between the source and target models of a

model transformation and to support change propagation, the

transformation tool may have an incremental update

mechanism and a consistency checking mechanism.

Thus, in general a model transformation tool should have

the components to implement a model editor, a repository, its

validation and transformation to another model (or code,

which can also be considered as a model). Model Editor

(CASE tool) is a part of the tool providing model creation and

modification possibilities. Model Repository is the “database”

for models, where they are stored.

Transformation Definition Editor is used for transformation

definition construction and modification. Transformation

Definition Repository is storage for transformation definitions.

There, a set of basic scripts written in a general purpose

programming language and powerful graphical

transformations can reside. And, finally, Model Validator is a

component used to check if the model is well enough defined

and has no potential problems that can affect the

transformation result.

III. BRAINTOOL AS A MODEL TRANSFORMATION TOOL

BrainTool [9] (see its general view in Fig. 1) is positioned as

one of the CASE tools, which enables system modeling and

model transformation according to requirements stated in the

previous section.

Fig. 1. General view of BrainTool.

Applied Computer Systems

 ___ 2014/16

35

The problem of automatic generation of the UML diagrams

from the formal and still customer-friendly presentation of

problem domain has not been solved yet [6]. The authors of

BrainTool propose to generate UML diagrams from the so-

called two-hemisphere model [5] of the problem domain,

which presents information about processes, information flows

between these processes and pre-defined types of these

information flows.

A. Modeling of the Two-hemisphere Model

The main idea of representing the initial information about

the system with two interrelated models – the business process

model and the concept model was introduced in 2002 [10].

The name of the approach, the two-hemisphere model, was

defined in [5], where the hypothesis about how to use two

interrelated models to share the responsibilities between object

classes was demonstrated on the example of a driving school.

By analogy with the human brain, which consists of two

hemispheres harmonically interrelated for an adequate human

behavior, the two-hemisphere model requires the harmony of

the presentation of the problem domain for future software

development with two interrelated models. Here, the business

process model displays behaviour of the system; the concept

model displays a skeleton of the system’s static structure.

The main benefit of the two-hemisphere model is that it can

be created and often already is created by the business analyst

at the customer’s side. A Standish group survey [11] shows

that about 83% of companies are engaged in business process

improvement and redesign. This implies that many companies

are familiar with business process modeling techniques or at

least employ particular business process description

frameworks [3], [11]. On the other hand, the practice of

software development shows that functional requirements can

be derived from the problem domain description as much as

7 times faster than if trying to elicit them directly from users

[1]. Both facts mentioned above and the existence of many

commercial and open source business modeling tools are a

strong motivation to base software development on the

business process model, rather than on any other soft or hard

models. So far, the first task the authors had to solve was to

develop the modelling environment or a two-hemisphere

model editor, which would provide an opportunity to create a

model, to manipulate with it and to save the model in a format

suitable for further transformations. Fig. 1 shows the general

view of BrainTool 2.0, which is developed to support the two-

hemisphere modeling of the problem domain.

The screen of BrainTool is divided into three parts. The

information panel on the topside of the screenshot shows the

list of elements defined by the two-hemisphere model. The

working area of the tool is divided into three drawing frames –

the process model, the concept model and the resulting class

or sequence diagram (at the bottom). Bottom part is also used

to create the sub-process diagrams. The tree view of all objects

defined in all models (including the resulting model) is shown

on the right side of the screenshot in Fig. 1.

Fig. 2 and Table I present the notation of the two-

hemisphere model. The two-hemisphere model of the system

has to define internal processes of the system, which have to

be enclosed by external processes performed by a set of

performers (users or other systems). The data flow coming

from one process to another is defined as the collection of data

processing, where the structure of the exact data flow has to be

defined by a conceptual class, called a concept in the two-

hemisphere modeling notation. Process diagram (Graph G1 in

Fig. 2) presents steps of some fragment of business logic of

the system (or a scenario) and usually is defined on the left

side of the two-hemisphere model. Concept diagram (Graph G2

in Fig. 2) presents conceptual classes of the system.

Fig. 2. Notation of the two-hemisphere model.

Concept diagram is similar to some kind of Entity

Relationship (ER) diagram [12], but without presentation of

relationships between classes, which are avoided at this level

of abstraction in the two-hemisphere model. The model can

have one or many process diagrams (scenarios) and only one

(general for the whole system) concept diagram.

TABLE I

ELEMENTS OF TWO-HEMISPHERE MODEL AND THEIR NOTATION

ELEMENT ELEMENT APPEARANCE

External process
and performer

Internal process

Data flow

Concept

B. Transformation to the UML Class Diagram and Its Layout

The essence of the two-hemisphere model driven

transformations is illustrated in Fig. 3. The business process

model (graph G1 in Fig. 3) is interrelated with the concept

model (graph G2 in Fig. 3) as follows – concepts in the

concept model define data types for dataflows between

business processes. The main idea of the transformation is

based on graph theory. The business process model is

transformed into intermediate model (graph G3 in Fig. 3),

Applied Computer Systems

2014/16 ___

36

when edges of the business process model become nodes of

the intermediate model, and nodes of the business process

model become edges of the intermediate model. The

intermediate model serves as a base for construction of the

communication model. The meaning of objects in an object-

oriented philosophy gives a possibility to share responsibilities

among class objects, where the data flow outgoing from the

internal process becomes the object-owner of this process for

performing it as an operation. The concept model allows

determining classes with attributes [13], [14], [15].

Fig 3. The essence of the two-hemisphere model transformation.

In correspondence with [16] the transformation is the

automatic generation of a target model from a source model

according to a transformation definition. In the case of

BrainTool, the source model is the two-hemisphere model

consisting of the process diagram, the set of concepts and

linkage of the concept to the data flows. The target is the UML

class diagram, which is a set of classes, class methods, class

attributes, interfaces and relationships between classes and

interfaces.

The first transformation task is to generate classes of

resulting UML class model. Classes are created from concepts

and retain their attributes. The following high-level

pseudocode expresses the idea of this transformation:

func generate_classes(process_model pm, concept_model cm,

class_model clm)

 for each concept in cm do

 clm.create_class_from(concept)

 for each process in pm do

 u_inputs = node.input_set().cardinality

 outputs = len(node.outputs())

 u_outputs = node.output_set().cardinality

 if u_inputs = 1 and u_outputs = 1 and outputs != 1 then

 for each output in node.outputs() do

 clm.create_class_from(output)

 clm.define_generalization(output, node.input_set())

An example in Fig. 3 shows the simplest transformation

case, when a process has one input event and one output event.

However, based on combinatorics we have determined 19

transformation cases, which are described in [14]. The

transformation cases differ from one another by the number

and combinations of input and output events and their types

expressed as concepts. All 19 cases allow conclusions about

classes – owners of methods, and about relations among

classes. Cardinalities (the number of different concepts linked

to data flows) of process inputs and outputs are used to

determine generalization between the classes created. Also

this information is used to define aggregation, association and

dependency between elements of the UML class diagram [14].

Processes from the process model become class methods as a

result of the transformation, which can be expressed in the

following pseudocode fragment:

func assign_methods(process_model pm, concept_model cm,

class_model clm)

 for each process in pm do

 classes = node.get_classes(clm)

 inter = null

 if len(classes) > 1 then

 inter = clm.create_or_get_interface(classes, node)

 for each c in classes do

 c.add_method(node)

 if inter != null then

 clm.define_realisation(c, inter)

Method assignment to classes gives the possibility to define

interfaces and realization relationship in the UML class

diagram. As a result, the target model consists of classes with

methods and attributes, interfaces with methods and five types

of relationships: generalization, dependency, aggregation,

association and realization.

Next step after creating the class model via the

transformation is its layout. A proper layout is essential for

easy viewing and quick understanding of a diagram. Crossing

lines of class relationships, overlapping classes and obtrusive

spacing, along with some other issues can cause

misinterpretation of an otherwise properly transformed

diagram, leading to difficulties in its usage and

comprehensibility. And since a manual layout can take time,

especially for larger diagrams consisting of many classes and a

variety of relationships, an automatic layout algorithm have

been proposed by authors of the paper in [ICSEA 2014].

C. Transformation to the UML Sequence Diagram and Its Layout

The same principle of graph transformation can also be

used also to generate elements of the UML sequence diagram

and additionally to keep also the time aspect as a sequence of

message sending. Process diagram is constructed in a manner

that it is possible to tell a sequence of processes and pass it via

transformation.

General idea of two-hemisphere model transformation to

the UML sequence diagram is shown in Fig. 4.

Applied Computer Systems

 ___ 2014/16

37

Fig. 4. Two-hemisphere model transformation to UML sequence diagram.

The pseudocode shows concept, process and data flow

transformation to the relevant UML sequence diagram

elements [17].

func generate_sq_object (concept_model cm, sequence _model sqm)

 for each concept in cm do

 sqm.create_object_from(concept)

func generate_sq_actor (process_model pm, sequence _model sqm)

 for each ext_process in pm do

 sqm.create_actor_from(ext_process_performer)

func generate_sq_message (process_model pm, sequence _model sqm)

 for each ext_process in pm do

 inflows = node.get_in_flows(ext_process)

outflows = node.get_out_flows(ext_process)

 if len(inflows) = 0 then

 mess_sender = ext_process_performer

 if len(outflows) > 1 then

 for each flow in outflows

 mess_receiver = flow.get_Concept()

sqm.create_mess_from(mess_sender, mess_receiver)

 if len(outflows) = 0 then

 mess_receiver = ext_process_performer

 if len(inflows) > 1 then

 for each flow in inflows

 mess_sender = flow.get_Concept()

sqm.create_mess_from(mess_sender, mess_receiver)

 for each int_process in pm do

 inflows = node.get_in_flows(int_process)

outflows = node.get_out_flows(int_process)

 for each iflow in inflows do

 for each oflow in outflows do

 mess_sender = iflow.get_Concept()

 mess_receiver = oflow.get_Concept()

sqm.create_mess_from(mess_sender, mess_receiver)

Processes from the process diagram (Graph G1) are

transformed into messages of the UML sequence diagram

(Graph G3). Concepts from the concept diagram (Graph G2)

with their relevant data flows from the process diagram help to

determine senders and receivers in the sequence diagram. It is

important to assign performers to external processes, as they

become actors in the sequence diagram. Actors are external

entities, which begin interaction. There are many

transformation cases that can occur transforming two-

hemisphere model into the UML sequence diagram.

Altogether, there are nine different cases described in [17],

they show a two-hemisphere model and corresponding UML

sequence diagram.

Another factor that needs to be taken in consideration is an

automatic diagram layout after it is created by transformation.

Diagram must be semantically and syntactically correct and

well-layouted to be comprehensible. In order to layout a

diagram special criteria have to be satisfied. There are general

diagram criteria, which can be applied to UML sequence

diagram (not all of them) and also specific criteria for a

sequence diagram. The authors of [17] summarize twelve

important criteria for a sequence diagram. The authors of this

paper have developed and implemented UML sequence

diagram layout algorithm in BrainTool that satisfies the most

important layout criteria [ICSEA 2014], such as

• precise sequence of messages;

• avoid object and lifeline overlapping;

• elements need to be arranged orthogonally;

• diagram flow;

• minimize crossings;

• message arrow length minimization;

• reduction of long message arrow number;

• minimize longest message arrow length.

D. Export/Import of the UML Diagrams from BrainTool to Other

UML Compatible Tools

The modern trend, which is model driven software

development, states the ability to define tool sets, which are

integrated to make a complete development environment. In

our case, the set can be defined as a tool for the UML class

diagram creation (it is BrainTool) plus the powerful modeling

environment for manipulating UML diagrams and further code

generation from them. Therefore, to become compatible with

such a modelling environment created tool has to have export

abilities of the generated UML class diagrams for their use in

other modeling tools.

Initially the Sparx Enterprise Architect was selected as the

environment to import the UML class diagrams created in

BrainTool. However, the authors faced problems importing

the XMI files containing the information about the UML class

diagrams (defined according to the existing standard [18])

Import into several other UML modelling tools failed on

occasion as well as loss of geometry was observed. The

authors of the paper stated the task to check abilities of

import/export between several different tools, and the results

of the experiment are shown in Table II.

Applied Computer Systems

2014/16 ___

38

TABLE II

MODEL INTERCHANGE BETWEEN UML COMPATIBLE TOOLS

 ArgoUML SPARX Enterprise Architect Visual Paradigm StarUML

ArgoUML Attribute types

 Method argument types

 Geometry

 Relations

 Import failed Geometry

 Method return values became method arguments

 Attribute types

 Method argument types

 Relations

 Attribute and method names

 Private/public/protected modifiers

SPARX

Enterprise

Architect

 Import failed Import ok. All data

imported

 Attribute and method names

 Attribute types

 Method argument types

 Private/public/protected modifiers

Visual Paradigm Import failed Geometry

 Relations

 Access violation. Program will be closed. Import

failed.

StarUML Geometry

 Elements from class model

were moved to design model

 Method argument names

 Import failed

Self-generated
XMI

 Import failed Geometry Geometry Attribute and method names

 Attribute types

 Private/public/protected modifiers

 Geometry

Cells of Table II show lacking information during import of

XMI file generated from the tool listed on the left side of the

table and imported into the tool listed at the top of the table.

For example, during the export of the UML class diagram

from the ArgoUML tool and import of it into the SPARX

Enterprse Architect tool, the model lost attribute types,

method argument types, diagram geometry and relations.

Otherwise, import of the UML class diagram from SPARX

Enterprse Architect tool into the ArgoUML tool failed at all.

The main lesson learned about the model interchange

between various modelling tools can be stated as a lack of

XMI support in current solutions. The problem can be solved,

for example, by introducing a certification standard for tools

that generate and interchange the UML diagrams. However,

such a certification needs to be introduced by a well-

recognized development community, e.g., the vendor of the

object-oriented philosophy – Object Management Group.

Currently, the problem of the model interchange has been

solved by the authors adapting the export of the generated

UML class diagram in correspondence with the format

required by the Sparx Enterprise Architect tool.

IV. COMPARISON WITH OTHER UML MODELING AND MODEL

TRANSFORMATION TOOLS

Since the beginning of the 1980s. numerous cases of model

generated software systems have been offered to attack

problems regarding software productivity and quality [19].

CASE tools developed up to that time were oversold on their

“complete code-generation capabilities” [20].

Nowadays, similar arguments are introduced by the Object

Management Group (OMG) Model Driven Architecture

(MDA) [6], using and integrating Unified Modeling Language

(UML) models [2] at different levels of abstraction.

Manipulation with models enables the automation of software

development with CASE tools supporting model driven

software development [16], [21], [22], [23]. Most of today’s

tools combine a number of functions in a more or less open

fashion. The traditional CASE tools provide a model editor

and a model repository. A code generator based on a scripting

language and plugged into a CASE tool provides the

transformation tool and transformation definition editor. In

that case, the transformation repository is simply text files

[16]. Authors have listed several tools offering creation of the

UML class and interaction diagrams in Table III, but they are

mainly UML editors, where a developer creates all the

diagrams manually with limited ability to generate new

elements.

The variety of “model-driven” tools can be divided into

tools to support code generation from the UML model, and

into tools created for the definition of the system model itself.

The second group of the tools is the so-called “UML editors”,

where tool developers propose different levels of automation

of the model creation itself.

BrainTool demonstrated in this paper can be classified as a

tool for creation of the UML diagrams, where the result of the

generation is expressed in XMI format – is importable either

into UML editors, like:

 UMLet 11.3 [24];

 Umbrello [25];

 Together [26];

or code generation tools, like

 Sparx Enterprise Architect [27];

 UML Studio [28];

 Visual Paradigm for the Unified Modeling Language [29];

 ArgoUML [30];

 MagicDraw [31];

 IBM Rational Software Architect [32];

 Eclipse [33].

As for now, the generation of the UML class diagram from

the existing source code (e.g., Java) is widely used by software

developers to visualize and understand the software structure.

Applied Computer Systems

 ___ 2014/16

39

TABLE III

COMPARISON OF BRAINTOOL WITH OTHER TOOLS GENERATING THE UML DIAGRAMS

Tool

Criteria

Visual

Paradigm

Sparx EA IBM RSA Visual Studio ReDSeeDS BrainTool

Initial information for

generation of the UML
diagrams

System req-ts &

use-case
diagram

System req-ts &

use-case diagram

System req-ts &

use-case diagram
& program code

Program code System req-ts Two-hemisphere

model

Model editor for initial

information

Text editor Text editor Text editor Text editor Text editor Graphical editor

Transformation base to

UML Class diagram

Reverse

transformation

code-to-model;
Formal

transformation
model- to-code

Reverse

transformation

code-to-model;
Formal

transformation
model- to-code

Text-to-model via

transformation

configuration
mechanism

Formal transformation

text-to-model

Formal

transformation

text-to-model
using

language
MOLA

Formal

transformation

model-to-model

Transformation base to

UML Sequence diagram

Linguistic

analysis

Linguistic

analysis

Linguistic

analysis

Formal transformation

text-to-model

Linguistic

analysis

Formal

transformation
model-to-model

Class (UML Class

Diagram)

Automatically Automatically Automatically Automatically Automatically Automatically

Attribute (UML Class
Diagram)

Automatically Automatically Automatically Automatically Automatically Automatically

Method / Operation (UML
Class Diagram)

Automatically Automatically Automatically Automatically Automatically Automatically

Association (UML Class

Diagram)

Automatically Manually Automatically Automatically Automatically Automatically

Class Interface (UML
Class Diagram)

No information Automatically Automatically Automatically Automatically Automatically

Dependency (UML Class

Diagram)

Automatically Manually Automatically Automatically Automatically Automatically

Aggregation (UML Class

Diagram)

Automatically Automatically Automatically Automatically Automatically Automatically

Generalization (UML
Class Diagram)

Automatically Manually Automatically Automatically Automatically Automatically

Implementation (UML

Class Diagram)

Automatically Automatically Automatically Automatically Automatically Automatically

Actors (UML Sequence

Diagram)

Borrowed from

use-cases

Borrowed from

use-cases

Borrowed from

use-cases

No Automatically Automatically

Objects (UML Sequence
Diagram)

Manually Manually Manually Automatically Automatically Automatically

Lifelines (UML Sequence

Diagram)

Manually Manually Manually Automatically Automatically Automatically

Operations (UML
Sequence Diagram)

Manually Manually Manually Automatically Automatically Automatically

Operation ordering (UML

Sequence Diagram)

Manually Manually Manually Automatically Automatically Automatically

Interaction frames (UML

Sequence Diagram)

Manually Manually Manually Automatically Automatically Automatically

Operation parameters
(UML Sequence

Diagram)

Manually Manually Manually Automatically Automatically No

Links between objects
(UML communication

diagram)

Manually Manually Manually No Automatically Automatically

Graphical representation
of the UML class diagram

Yes Yes Yes Yes via Sparx EA Yes

Graphical representation

of the UML sequence
diagram

Yes Yes Yes Yes via Sparx EA Yes

Graphical representation

of the UML
communication diagram

Yes Yes Yes No via Sparx EA Not yet

Automatic layout of UML

class diagram

No Yes Yes Yes via Sparx EA Yes

Automatic layout of UML

sequence diagram

No Lawless ordering

of objects at the

top of diagram

No Yes via Sparx EA Yes

Export abilities to UML

compatible tools

Has special

export format

Has special export

format

Has special export

format

No at least to

Sparx EA

Defined by XMI and

importable in the
tools supporting the

standard

specification

Applied Computer Systems

2014/16 ___

40

Several examples of these tools are the following:

 ESS-Model, which allows obtaining a class diagram with

associations and inheritance by simple drag-and-drop of

source files – Java .java and .class and Delphi .pas and

.dpr [34].

 AgileJ Structure View, which allows displaying Java-

specific information, is IDE specific and automatically

handles layout elements of a class diagram [35].

 BOUML is a free modelling tool, which allows UML

modelling, Java, C++, PHP, Python, Idl code generation,

as well as class diagram generation from C++, Java and

PHP source files [36].

 ObjectAid as Eclipse plug-in provides a visual

representation for Java source files. ObjectAid does not

execute any reverse engineering; it displays source files

in a different view. When a developer adjusts the

diagram or the source file, the other view is adjusted

accordingly [37].

Another variety of tools generate the UML class diagram

from a predefined data structure. For example Sparx

Enterprise Architect has this feature. One more tool, which

allows generating a class diagram from a data model, is Visual

Paradigm. Generation of the UML class diagram from pre-

defined data structures requires a solid contribution of the

software specialist to define all these structures. It is already

modelling of the UML class diagram itself. In contrast to these

tools, BrainTool generates the class diagram from initial

information about the system, which is understandable for the

business analyst and does not require software knowledge for

modelling of business processes. Usually, the UML class

diagram is constructed in the analysis phase, before code

writing. Therefore, the tool, which generates the class diagram

at the initial stage of the project, is very useful. It allows

automatic creation the static structure of the developed system

and serves as a base for a further code generation, avoiding

mistakes and mismatches between requirements and

implementation.

Attempts to receive UML interaction diagrams from the

requirements in a natural language are one of the popular lines

of research. For example, ReDSeeDS [38] supporting tool

proposes the linguistic analysis of system requirements and

generates several elements of the UML sequence diagram,

based on predefined format of requirement specification.

However, the tool has no graphical presentation of the

resulting diagram and exports the result to Sparx Enterprise

Architect.

On the other hand, Visual Studio supports the ability to

generate the UML sequence diagram from the source program

code. This is different direction from the approach offered by

the authors of the paper and this tool can be interesting for

comparison only in a diagram presentation aspect, like the

diagram layout implementation, or export to other UML

compatible tools.

Tools, like Sparx Enterprise Architect [27], Visual

Paradigm [39] or Rational Software Architect [32], give the

ability to reflect to the existing UML diagram elements, if they

are already created in other UML diagrams, but still, initially,

these elements are identified manually.

There are several tools that provide automatic diagram

layout, e.g., Borland Together [26] ((not listed in Table III)

supports automatic UML sequence diagram layout, but uses a

lawless set of layout criteria). Sparx Enterprise Architect [27]

is the tool that also provides automatic UML sequence

diagram layout however, it does not satisfy all the mentioned

criteria of layout.

Thereby the authors believe that currently abilities for the

generation of the UML diagrams offered by the two-

hemisphere model driven approach and supported by

BrainTool are the most expansive, but the authors still have to

refine the tool with additional functionality expected by users

in popular UML editors.

V. CONCLUSION

The main idea of the research presented in this paper is to

show the main functionality of BrainTool to automatically

generate UML diagrams from scratch. Moreover, the tool has

to be able:

1) to work with the initial presentation of the problem

domain expressed in terms of the two-hemisphere model;

2) to validate the initial model and to identify problematic

elements, which break the transformation process;

3) to generate the UML diagrams from it based on the pre-

defined transformations;

4) to visualize the target model in the form of the UML

class or sequence diagram; and

5) to export the generated diagrams into the UML

compatible tool. (Huge sentence, it's best to break it into

several for clarity...) The authors share several lessons

they have learned in engineering a model transformation

tool within the scope of the paper.

One of the key lessons learned during the experiment with

the BrainTool implementation is the selection of the

development environment and technologies. Deeper post-

experimental analysis of available technologies and the

essence of the tool as a software product allow the authors to

claim that any general purpose programming language or

specific environment for such tool creation may be used. In

this case, the determining factor is the available resources and

previous experience of the developers. It is possible to use a

general purpose programming language for transformation

definition without integrating transformation language support

into a model editor. General purpose language allows defining

more universal transformation rules. Also it enables possible

contributors not familiar with specific transformation

languages to define their own model transformations. As

another advantage it makes tool components more

independent from each other, thus easing parallel development

of them.

One of the problems solved during the development of

BrainTool is in the area of the target model layout and its

import into other modeling tools. The issue of diagram layout

is not the problem of the tool; it is a problem of the algorithm

itself. The authors have offered such an algorithm satisfying

Applied Computer Systems

 ___ 2014/16

41

the requirements for element placement in the modeling area

for the UML class and sequence diagrams. However, the

authors claim that any solution can be easily integrated within

BrainTool. The authors consider the layout to be another kind

of transformation where the source model is the generated

class diagram “as is” and the target is the model laid out.

Using such a point of view makes it easy to add automatic

diagram layout at any development stage.

Another problem still not solved is a lack of standardization

and certification support in model interchange. The authors

would introduce plug-ins for different tools, where each plug-

in can also be considered transformation from UML class

diagram to tool-specific XMI document, if it is still impossible

to integrate the unified standard of the diagrams into the tools

themselves.

The working version of BrainTool enables one to operate

with the two-hemisphere model and to generate the set of the

elements of the UML diagrams, which in turn can be used to

generate code fragments. Comparison of BrainTool with other

UML modeling or model transformation tools shows that

BrainTool has several abilities not yet realized in advanced

modeling tools, but the developers of BrainTool still have to

implement a piece of functionality.

The further efforts of the authors will be turned to the

refinement of the transformation rules to be able to extend the

set of the UML elements with the aim to improve code

generation abilities in general.

ACKNOWLEDGMENT

The research presented in the paper is supported by

Accenture Latvian Branch, project No. L7950 “Development

of Model Transformation Tool Prototype”, and by the Latvian

Council of Science, No. 342/2012 “Development of Models

and Methods Based on Distributed Artificial Intelligence,

Knowledge Management and Advanced Web Technologies”.

REFERENCES

[1] W. P. M. van der Aalst, “Trends in business process analysis – from

verification to process mining,” in Proc. of the 9th Int. Conf. on

Enterprise Inform. Syst., ICEIS 2007, Funchal, Portugal. 2007, pp. 5–9.
[2] K. Vollmer, C. Richardson and C. Clair, “The Importance Of Matching

BPM Tools To The Process,” Forrester Research Inc., 2010.

[3] OMG, “UML Unified Modeling Language Specification”, August 2011.
[Online]. Available: http://www.omg.org/spec/UML/ [Accessed: Sept. 21,

2013].
[4] P. Rittgen, “Quality and perceived usefulness of process models,” in

Proc. of the 2010 ACM Symp. on Appl. Computing, Sierre, Switzerland,

2010, pp. 65–72. http://dx.doi.org/10.1145/1774088.1774105
[5] O. Nikiforova and M. Kirikova, “Two-hemisphere model driven approach:

engineering based software development,” in The 16th Int. Conf.
Advanced Information Systems Engineering, CAiSE 2004, vol. 3084,

June 7–11, 2004, Riga, Latvia. pp. 219–233.

http://dx.doi.org/10.1007/978-3-540-25975-6_17
[6] G. Krishnamurthy “CASE Tools,” [Online]. Available: http://www.umsl.edu/

~sauterv/analysis/F08papers/View.html [Accessed: Sept. 22, 2013].
[7] J. Mukerji, J. Miller, “MDA Guide Version 1.0.1.” OMG, no. omg/2003-06-01

June 2003. [Online]. Available: http://www.omg.org/cgi-bin/doc?omg/03-

06-01 [Accessed: Sept. 22, 2013].
[8] T. Mens, P. Gorp, “A Taxonomy of Model Transformations,” Electronic

Notes in Theoretical Computer Science (ENTCS), vol. 152, 2006,
pp. 125–142, March 2006. http://dx.doi.org/10.1016/j.entcs.2005.10.021

[9] RTU, Official page of “BrainTool” tool. [Online]. Available:

http://braintool.rtu.lv [Accessed: Sept. 20, 2013]

[10] O. Nikiforova, “General framework for object-oriented software

development process,” Scientific Proc. of Riga Technical University,

vol. 13, pp.132–144, 2002.
[11] H. Peyret and D. Miers, “The shifting market for business process

analysis tools,” Forrester Research Inc., 2010.
[12] P. Chen, “The entity relationship model – towards a unified view of data,”

ACM Trans. Database Systems, TODS, vol. 1, no. 1. pp. 9–36, 1976.

http://dx.doi.org/10.1145/320434.320440
[13] O. Nikiforova, N. Pavlova and J. Grigorjevs, “Several Facilities of Class

Diagram Generation from Two-Hemisphere Model,” in 23rd Int. Symp.
on Computer and Information Sciences, ISCIS, Oct. 27–29, 2008,

Istanbul, Turkey. pp. 1–6.

[14] O. Nikiforova and N. Pavlova, “Foundations on generation of
relationships between classes based on initial business knowledge,” in

17th Int. Conf. on Information Systems Development, ISD, Paphos,
Cyprus, Aug. 25–27, 2008., Springer-Verlag: New York. pp. 289–297.

http://dx.doi.org/10.1007/b137171_30

[15] O. Nikiforova and N. Pavlova, “Open Work of Two-Hemisphere Model
Transformation Definition into UML Class Diagram in the Context of

MDA,” in Software Engineering Techniques, LNCS, Springer Berlin

Heidelberg, vol. 4980, 2011, pp. 118–130.

http://dx.doi.org/10.1007/978-3-642-22386-0_9

[16] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven
Architecture – Practise and Promise. 1st. ed., Addison-Wesley, 2003.

[17] O. Nikiforova, D. Ahilcenoka, D. Ungurs, K. Gusarovs, L. Kozacenko,
“Several Issues on the Layout of the UML Sequence and Class

Diagram,” Proc. of the 9th Int. Conf. on Software Engineering Advances,

ICSEA 2014, Oct. 12–16, 2014, Nice, France, pp. 40–47, Available:
http://www.thinkmind.org/

[18] Information Technology – XML Metadata Interchange (XMI), ISO/IEC
19503:2005(E), 2005.

[19] R. Balzer, “A 15 year perspective on automatic programming,” IEEE

Transactions on Software Engineering, vol. 11, issue 11, pp. 1257–1268,
Nov. 1985. http://dx.doi.org/10.1109/TSE.1985.231877

[20] J. Krogstie, “Integrating enterprise and IS development using a model
driven approach,” in 13th Int. Conf. on Information Systems

Development. In: Advances in Theory, Practice and Education. Springer

Science+Business media, Inc. 2005, pp.43–53.
http://dx.doi.org/10.1007/0-387-28809-0_5

[21] D. Kundu, D. Samanta and R. Mall, “Automatic code generation from
unified modelling language sequence diagrams,” IET Software, vol. 7,

issue 1, 2013, pp. 12–28. http://dx.doi.org/10.1049/iet-sen.2011.0080

[22] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley Publishing, Inc., Indianapolis, Indiana, 2003.

[23] S. J. Mellor and M. J. Balcer, Executable UML. A Foundation for Model-
Driven Architecture. Boston: Addison-Wesley, 2002.

[24] UmLet, Official page of “UMLet” tool. [Online]. Available:

http://www.umlet.com/ [Accessed: Sept 21, 2013].
[25] KDE e.V., Official page of “Umbrello” tool. [Online]. Available:

http://uml.sourceforge.net [Accessed: Sept 21, 2013].
[26] Borland, Official page of “Together” tool. [Online]. Available:

http://www.borland.com/products/together/ [Accessed: Sept 21, 2013].

[27] Sparx, Official page of “Sparx Enterprise Architect” tool. [Online].
Available: http://www.sparxsystems.com [Accessed: Sept 21, 2013].

[28] PragSoft Corporation, Official page of “UML Studio” tool. [Online].
Available: http://www.pragsoft.com/prod_umls.html [Accessed: Sept

21, 2013].

[29] Visual Paradigm, Official page of “Visual Paradigm for the Unified
Modeling Language” tool. [Online]. Available: http://www.visual-

paradigm.com/product/vpuml/ [Accessed: Sept, 21, 2013].
[30] Tigris, Official page of “AgroUML” tool. [Online]. Available:

http://argouml.tigris.org/ [Accessed: Sept 21, 2013].

[31] No Magic Inc, Official page of “MagicDraw” tool. [Online]. Available:
http://www.nomagic.com/ [Accessed: Sept 21, 2013].

[32] IBM, Official page of “Rational Software Architect” tool. [Online].
Available: http://www.ibm.com/developerworks/rational/products/rsa/

[Accessed: Sept. 18, 2013].

[33] Eclipse Foundation, Official page of “Eclipse” tool. [Online]. Available:
Internet: http://www.eclipse.org// [Accessed: Sept. 18, 2013].

[34] Eldeam, Official page of “ESS-Model” tool. [Online]. Available:
http://essmodel.sourceforge.net/index.html [Accessed: Sept. 18, 2013].

[35] AgileJ Ltd, Official page of “AgileJ Structure View” tool. [Online].

Available: http://www.agilej.com/index.html [Accessed: Sept. 18, 2013].
[36] Bruno Pages, Official page of “BOUml” tool. [Online]. Available:

http://www.bouml.fr/ [Accessed: Sept. 18, 2013].

http://www.interaction-design.org/references/authors/wil_m__p__van_der_aalst.html
http://dx.doi.org/10.1145/1774088.1774105
http://dx.doi.org/10.1007/978-3-540-25975-6_17
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1145/320434.320440
http://dx.doi.org/10.1007/b137171_30
http://dx.doi.org/10.1007/978-3-642-22386-0_9
http://dx.doi.org/10.1109/TSE.1985.231877
http://dx.doi.org/10.1007/0-387-28809-0_5
http://dx.doi.org/10.1049/iet-sen.2011.0080
http://www.sparxsystems.com/
http://www.pragsoft.com/prod_umls.html
http://argouml.tigris.org/

Applied Computer Systems

2014/16 ___

42

[37] ObjectAid LLC, Official page of “ObjectAid” tool. [Online]. Available:

http://www.objectaid.com/ [Accessed: Sept. 15, 2013].

[38] ReDSeeDS, Official page of “ReDSeeDS” development system.
[Online]. Available: http://www.redseeds.eu/ [Accessed: Sept. 18, 2013].

[39] Visual Paradigm, Visual Paradigm for UML, “Generate Sequence
Diagram from Use Case Flow of Events,” May 2011. [Online]. Available:

http://www.visual-paradigm.com/product/vpuml/tutorials/gensdfromfoe.jsp

[Accessed: Sept. 15, 2013].

Oksana Nikiforova received the Doctoral
Degree in Information Technologies (system

analysis, modeling and design) from Riga Technical

University, Latvia, in 2001.
She is presently a professor at the Department of

Applied Computer Science, Riga Technical

University, where she has been working for the

faculty since 2000. Her current research interests

include object-oriented system analysis and
modeling, especially the issues in Model Driven

Software Development.
E-mail: oksana.nikiforova@rtu.lv

Ludmila Kozacenko received the Master degree
in Computer Systems from Riga Technical

University, Latvia, in 2014. She is presently a
Research Assistant at the Department of Applied

Computer Science, Riga Technical University. Her

current research interests include transformation
approach classification and realization of

transformation using general purpose programming
language Java.

E-mail: ludmila.kozacenko@rtu.lv

Dainis Ungurs received the Master Degree in
Computer Systems from Riga Technical University,

Latvia, in 2014.
His current research interests include original

ways of UML class diagram layout in system

modeling tools.
E-mail: dainis.ungurs@rtu.lv

Dace Ahilcenoka received the Master Degree in

Computer Systems from Riga Technical University,

Latvia, in 2014.
She is presently a Research Assistant at the

Department of Applied Computer Science, Riga
Technical University. Her current research interests

include UML diagram layout, algorithms of diagram

layout.
E-mail: dace.ahilcenoka@rtu.lv

Andrejs Bajovs received the Master Degree in

Computer Systems from Riga Technical University,
Latvia, in 2014. He is presently Java developer in IT

solutions development company ProfIT.
His current research interests include original

ways of code generation in model driven

architecture.
E-mail: andrej_bv@inbox.lv

Nadezda Skindere received the Master Degree

in Computer Systems from Riga Technical
University, Latvia, in 2014.

Her current research interests include
certification on system modeling tools within the

framework of Model Driven Software Development.

E-mail: nadezda.skindere@rtu.lv

Konstantins Gusarovs received the Master

Degree in Computer Systems from Riga Technical
University, Latvia, in 2012. He is Java developer in

Forticom Ltd.
His current research interests include object-

oriented software development and automatic

obtaining of program code.
E-mail: konstantins.gusarovs@gmail.com

Maris Jukss is a second year PhD student at the

Modelling, Simulation and Design Lab in School of

Computer Science at McGill University, Canada.
His current research interests are in efficient and

usable model transformations.
E-mail: maris.jukss@mail.mcgill.ca

