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Abstract – we present an integrated approach for robot 

localization that allows to integrate for the artificial landmark 

localization data with odometric sensors and signal transfer 

function data to provide means for different practical application 

scenarios. The sensor data fusion deals with asynchronous sensor 

data using inverse Laplace transform. We demonstrate a 

simulation software system that ensures smooth integration of the 

odometry-based and signal transfer – based localization into one 

approach.  
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I. INTRODUCTION 

Localization is one of the most important issues that have to 

be solved in mobile robotic platforms today. If the robot 

operates autonomously its pose estimation is extremely 

important in order to avoid obstacles, plan actions properly, 

follow planned trajectories or complete other specific tasks. 

In this paper we propose an integrated indoor robot 

localization approach that is based on use of artificial 

landmarks that can be visually tracked by robots. 

Unfortunately, as it is explained later, not always the 

landmarks are within the sight of sensors. Therefore we 

propose to combine the landmark-based localization with 

signal transfer-based and wheel encoders-based localization 

method [1,2]. This allows overcoming limitations of the 

methods while used alone. Throughout the paper we assume 

all of the incoming data being noisy and normally distributed 

around its mean value. This important assumption allows 

estimating robot pose and its variance using kinematic model 

of the robot. 

Input data is provided by robot cameras and odometric 

sensors – wheel encoders. For practical implementation we 

use iRobot Roomba560 vacuum cleaning robots that are 

complimentary equipped with Intel Atom CPU (Central 

processing unit) based embedded computing node as well as 

WiFi (Wireless network trademark) and web camera [3]. 

The rest of the paper is organized as follows: Section II 

outlines the addressed problem, Section III describes related 

work in fuse estimations from different data sources, Section 

IV describes the technique used for robot localization based on 

artificial landmarks mounted on the ceiling, Section V 

describes use of other sensors and their error estimation 

through the algebra of random variables, Section V proposes 

to use signal response function as the tool for robot pose 

estimation and forecasting without using sensors, Section VI 

describes use of multidimensional signal response function to 

reduce the complexity of calculations and error estimation, 

Section VII demonstrates use of the proposed indoor 

localization method while Section VIII gives conclusions and 

insight of future research goals. 

 

II. PROBLEM STATEMENT 

 We assume that the robotic system will be used indoors 

only and the environment itself is available for necessary 

minor modifications in order to provide infrastructure for 

robots i.e., it is possible and feasible to install some special 

markings that provide significant information to robots about 

their pose and translations within environment. However it is 

important to emphasize that these data sources are not always 

available to the robot due to environment configurations as 

depicted in figure 1.  

 

 

Fig. 1 Robot and landmarks possible positions: (1) – landmark can be detected 

by sensors and (2) landmark is out of sensors sight 

 

Therefore, another important source of pose and motion 

information is a set of odometric sensors. In case of Roomba 

each of the driving wheels is equipped with rotary encoders, 

which data are available via Roomba serial interface [4]. 

If  more than one information source is used for the same 

estimation, information from all sources must be fused into a 

single measurement to provide position estimation [1,2]. Due 

to their specifics, data from some sensors are available at one 

moment of time while data from others are delayed. The 

delays are mainly caused by communication latencies and 

specifics of the sensors used like maximum refresh rate. It 
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means that the sensor data fusion should be addressed by 

appropriate sensor data models.  

Another important source of information that might be used 

for pose estimation is robot mutual collisions where pose 

estimations from robots involved in the collision can be fused 

into single estimation. This final estimation than can then be 

used for individual pose estimation error correction. 

Therefore, in our case there are at least three possible pose 

estimation data sources that have to be fused into a single 

estimation, which is passed to Kalman filter (KF further in the 

text) or another similar algorithm for noisy time series 

processing [5]. Only then the estimation is passed to the robot 

or another system that need this estimation.   

Schematically it is depicted in Fig. 2: 

 

 
Fig 2. Pose estimation schema 

In this paper we focus on data fusion and forecast steps that 

skip discussion on KF or equivalent techniques and collisions 

data processing. 

Since the pose estimation is a common problem in mobile 

robotics, some related work has to be analysed. 

III. RELATED WORK 

In general, having two noisy measurements received from 

sensors, where each of them is described by its mean μ value 

and variance σ, i.e. assuming that the measurements are 

Gaussian variables, we can describe each of the measurements 

by a Gaussian distribution function of the form [6]: 

 (1) 

The merging procedure in this case is rather straightforward 

because of the feature of the Gaussians i.e. the product of the 

two Gaussians is Gaussian [6].  

 (2) 

where  

 

 

This useful feature of Gaussian representations in used in 

various applications including sensor data fusion. A good 

example is PGM (Abbreviation given by authors) algorithm 

that employs k-nearest neighbours approach to select the 

closest incoming measurements in order to combine them 

pair-wisely in order to produce the best estimate and cluster 

them using a cluster threshold [6]. This approach is very 

efficient in terms of saving computing power and effective for 

use in embedded application but unfortunately does not 

provide the means for multi-dimensional estimation fusion. 

However the idea behind the PGM is the assumption that more 

than one independent data source for the same estimation can 

provide more accurate final estimation.  

In [7] the multidimensional measurements are described by 

appropriate multidimensional Gaussian distributions with 

mean values - centre corresponding to estimated value and 

standard deviation along axes (x and y in this case) correspond 

to estimated noise of the measurement. Therefore the noise is 

described by the appropriate matrix where squared standard 

deviations initially are determined from each dimension axes 

in the local coordinates frame and aligned on the main 

diagonally. For the two-dimensional case with two 

measurements 1 and 2 the matrix for each of the 

measurements is formed as depicted in equation (3) [7]. 

  (3) 

The final estimation is accomplished by combining 

covariance matrixes and estimation mean values like as 

outlined in the equations (4) and (5) [7].  

 (4) 

 (5) 

Here  represents mean values of i-th measurement, but  

represents its noise covariance.  

Finally, if the local coordinate frame is rotated in respect to 

the global coordinate frame then appropriate rotation R(θ) to 

covariance matrix is applied[7]:  

  (6) 

A slightly different approach is proposed by [8], where a 

Simple Convex Combination algorithm is used. In this case the 

final estimation is calculated as follows [8]: 

 (7) 

Here the noise covariance matrix Cerr is calculated by 

addition and inversion of two noise covariance matrixes [8]: 

  (8) 

Both methods assume that measurements are independent 

of each other. In case they are not independent the calculations 

are significantly more complex due to cross correlation 

matrixes calculation [1]. However in our application case we 

assume that all measurements are independent.  
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While both methods are presented as very effective by the 

authors they do not correspond directly to our particular case. 

The first method presented in [7] is used for robot football, 

where every robot acts as a separate sensor. The ball in this 

case is the tracked object. In general, mathematically there is 

no difference whether a single robot tracks multiple landmarks 

or multiple robots track a single object because the error 

sources are related to the multiple landmarks in one case and 

to multiple sensors in another case.  

The method presented in [8] uses multiple stationary 

installed sensors that track a single robot. Again, here the 

problem statement in general is the same. The most significant 

difference between both approaches is sensor covariance 

matrices that initially might be different for each of the 

sensors. Similarly we initialize covariance matrices but all of 

them are equivalent because each of the landmark is 

recognized with the same sensor – web camera – causing the 

same sensed data variations. 

Another important issue that has to be considered is time 

delayed incoming data. Unfortunately, none of the presented 

methods provide means for delayed data. As presented in [1,2] 

each of the sensors is modelled by using their time dependent 

models to estimate their values until the predefined time 

instants where all of the sensor data is fused into a single 

estimation.  

Because of the error being time dependent, i.e. the longer 

time interval the larger standard deviation or variance of the 

measurement, both mean value and error estimation time 

models have to be considered.  

 

IV. USE OF LANDMARKS 

Our approach is based on the assumption that indoor 

environment is available for landmark use – it means that it is 

possible to install specially designed landmarks for robot 

positioning in global coordinates, thereby in comparison with 

the landmarks that can provide pose and position data only in 

local coordinates frame decreasing positioning complexity and 

increasing pose estimation accuracy.  

Use of artificial landmarks or dedicated robot markings is 

not new in robotics. In [9] robot pose estimation is based on T 

shape marking on top of the robots. A single camera installed 

on robot arena ceiling and the appropriate markings 

recognitions algorithm is used to estimate the poses and 

headings. In [10] a “cat paw” markings are proposed that 

allow to recognize robots pose and heading in the same way as 

it is done in [9] by ceiling-mounted camera. 

Some earlier scientific efforts presented in [11] propose to 

use rotation variant landmarks in the form of circles with 

black borders of different thickness. The proposed method 

allows calculating the actual robot disposition relative to the 

landmark via calculating deformation of the landmark image 

in landmarks coordinates frame at various viewing angles, i.e. 

the circle transforms into ellipse. In contrast, the method 

presented in [12] defines landmarks as rotation variants and 

uses colour coding thus enabling robot pose estimation with a 

single omnidirectional camera.   

We propose to use unique (in terms of similar landmarks 

within the same area of robot operation) rotation variant 

landmarks – glyphs (see Fig. 3) installed on the ceiling at 

known positions thereby providing useful information about 

the position and pose of the robot when appropriate landmark 

is noticed and recognized [13].  

 

 

 

 

 
Fig 3. Landmark examples: (1) and (2) rotation variants while (3) – (5) are 

rotation invariants [13]. 

As it is depicted in Fig.3, a landmark is a set of white and 

black squares aligned in a way that they can produce image 

that in fact is a 2D binary representation. We use this feature 

to ensure that in a single frame no two similar glyphs can even 

appear.  

Initially the frame produced by the on-board web camera is 

used to recognise those glyphs that are in the “area of sight”, 

where every recognized glyph is represented by its centre and 

polar coordinates - relative to the frame geometric centre, i.e. 

distance R and angle θ (see Fig. 4).  
As emphasised in [14], before using cameras for object 

recognition it is recommended to use appropriate distortion 

elimination algorithms to eliminate distortions caused by wide 

angle cameras lenses. In our case the used cameras are with 

rather narrow angle of view and therefore the actual 

distortions are not significant for glyph position estimation.  

Having the recognised glyphs and knowing either 

dimensions of the used glyphs or distance from camera to the 

glyph centre, when both are aligned on the same line, which is 

orthogonal to the ceiling, it is possible to express every pixel 

of the image in mm that corresponds to the actual distance 

represented by the pixel. 

 

θ2 

θ1 

R2

R1

{x1,y1}

{x2,y2}

 

Fig 4. Landmark representations in web camera frame.  

With this correspondence it is possible to calculate the 

actual disposition of the robot from a particular glyph. If each 

of the glyphs is installed at some known position in global 

coordinate frame, then every one of them will provide means 

for robot position estimations in global coordinate frame.  

It means that every recognised glyph provides robot 

position (x,y), its heading (θ) and noise. In this case only one 

sensor is used, but due to minor impact of lens distortion, 

camera resolution and recognition algorithm approximations 

and applied filtering techniques [13] the noise has to be 
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considered. Using the notion introduced in previous section 

the calculated state is represented by multidimensional 

Gaussian, where noise is described by covariance matrix (9) 

that is associated with the appropriate i-th glyph state (10). 

Initially all matrixes are the same due to the use of single 

sensor. 

  (9) 

  (10) 

The actual values of standard deviations for x,y and θ 

components of the state are determined experimentally based 

on multiple robot runs and actual disposition measurements.  

For calculation of the final estimation by using multiple 

estimations they are fused by employing the proposed 

technique [7], mainly due to its simplicity of implementation. 

This approach is justified by the fact that all of the estimations 

corresponding to individual glyphs are simultaneously 

available. Because of controlled glyph installation all of the 

glyphs are oriented in one direction, which enables to 

eliminate rotation calculations as presented in [7]. If only one 

glyph is observed then fusion is not required and initial 

covariance matrix of the estimation is used. During the initial 

tests the glyph data allows to localise the robot with rather 

high accuracy within few centimetres. The most significant 

feature of this approach is constant variance that is not 

growing over time.  

V. USE OF OTHER SENSORS 

As mentioned before, an important source of robot position 

information are wheel encoders. Unfortunately due to data 

interface delays of the used robotic platforms actual data from 

encoders is not available at present time instants. This 

situation is depicted in Fig 5, where Ti represents i-th time 

interval when the robot position is being estimated. In our 

case, for interval reference we use camera frame processing 

interval that is constant. Di represents i-th incoming data for 

one sensor packet. Δti represents varying time interval caused 

by data transfer delays, which actual length is known only at i-

th time instant.   

T1 T2 T3 T4

D2 D3 D4
Δt2 Δt3 Δt4

(t)

 

Fig 5. Sensor data availability relative to predefined time intervals of position 

and pose estimation 

While wheel encoder values play significant role in position 

and pose estimation in situations when landmarks are not 

observed, it is necessary to estimate the actual value of the 

encoders having previous observation at a time Ti  - Δti. Due to 

significance of the data, simple linear models have to be 

replaced by more tailored models to the actual robotic 

platform. We propose to use signal response function instead 

of the offered by Linear time-invariant system theory [15]. 

The actual mechanism behind that is based on Laplace 

transformation of functions from time domain to Laplace 

domain. By definition Laplace transformation F(s) of time 

function f(t) is given by integral (11) [15]:  

, (11) 

where  – indicates Laplace transform of the time 

function f(t), s – complex Laplace variable of the form             

s = σ+jω, F(s) – the transformed function in Laplace domain.  

h(t)

x(t) y(t)

H(s)

X(s) Y(s)

(a)

(b)

 

Fig 6. Signal response in time domain (a) and in Laplace domain (b) [15]. 

As shown in figure Fig 6, the system response is defined by 

input signals x(t) in time domain or X(s) in Laplace domain, 

impulse response h(t) or signal transfer functions H(s) and 

output signals y(t) and Y(s) in corresponding domains.  

In Laplace domain, signal response is defined by the ratio 

between output Y(s) and input X(s), while in time domain the 

multiplication corresponds to convolution [15]. This 

correspondence is indicated in equation (12): 

 (12) 

The signal transfer function H(s) is acquired by using (11) 

and replacing f(t) by h(t). The convolution itself is defined by 

the equation (13) [15]: 

 (13) 

For modelling the input signal x we use a simple step 

function that fully corresponds to the incoming robot control 

signals.  

Use of the impulse function in practice is difficult as it is 

infinitely short. Instead, we can use step function, which is 

defined by integral of impulse function. 

 (14) 

As shown in (14), the derivative of the step function is an 

impulse at the time instant t. This allows to transform the 

equation (13): 

 (15) 

 Having expression (15), to get the actual output it is 

necessary to incorporate the observed values at previous 

observations by applying another convolution step. While 

there is no prior information about the control signals 

available we model the input impulses δ(τ) as constant during 

interval Δti.  
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Fig 7. Simulated system response and output forecast without noise. 

Figure Fig.7 presents a simulated output forecast having a 

particular impulse response function and input. Step response 

represents the derivative of the response function that is 

actually used in calculations. Input signal represents a typical 

trapezoidal shape of the control signal for robot manoeuvring.  

The actual signal response function has to be acquired 

experimentally due to technical specification of the robot, its 

imperfection and environmental constraints, such as ground 

cover, traction of the surface, etc. Another issue is robot’s 

response latency to the input signal that also differs from robot 

to robot and therefore has to be tailored experimentally to the 

particular robot. The response function has to be extracted 

from a series of experimental raw data and filtered to smooth 

the noise and reduce possible forecast error.  

The abovementioned steps of response function acquisition 

are repeated for each odometric sensor – in our case for both 

of two wheels. The input signal is control signal in the form of 

PWM (Pulse wide modulated signal) coded by floating point 

value normalized to a unit (see Fig 7). Direct wheel speed 

measured by encoders is used as the output . Thus, the output 

of response function can be translated to robot’s actual speed 

in m/s.  

However, it is necessary to emphasise that while the actual 

measurements have errors they also have to be estimated over 

the time. It means that their values – values of variances have 

to be modelled with the help of time dependant models. In our 

case we use the linear model: 

  (16) 

In (16)  represents variance estimated at the time 
instant t and Δt represents varying time interval caused by 

data transfer delays as depicted in Fig.5. In order to calculate 
the final estimation error the variance  has to be estimated 
through kinematic calculations.  

The assumed kinematic model of the differential drive robot 

is depicted in Fig. 8. 

 

Fig 8. Differential drive robot model 

The main parameters of the robot motion are disposition of 

the robot in polar coordinates: 

  (17)  

  (18) 

In equations (17) and (18) R – distance from the robot’s mass 

centre to instantaneous rotation centre MLC, vl and vr – robot 

left and right side wheel linear speeds characterised by normal 

distributions N(vl, ) and N(vr, ), (x,y) – position of the 

robot’s mass centre in global coordinates frame and l – 

distance between wheel centres.  

 (19) 

The overall kinematic model is depicted in (20) [16].  

 (20) 

Using this model over time makes it possible to estimate the 

robot’s position expressed in form (9) and (10). With the help 

of random variable algebra it is rather easy to calculate  

variance of angular speed, which according to (18) is linear 

transformation of normally distributed random variable. 

Therefore: 

   (21) 

Estimation of  is more challenging because ration of the 

two normally distributed variables is Cauchy distribution that 

has limited practical application. In [17] an approximated 

approach (see (22) and (23)) is proposed that allows to accept 

R as normally distributed random variable under certain 

constraints: 

 (22) 

  (23) 

In (22) and (23) according to random variable algebra 

.  For calculation of 

variance of MLC it is necessary to combine several 

transformations of variances: 
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 (24) 

 (25) 

In (24) ,  and are determined from previous 
time intervals.  

In order to estimate variance of the new pose of the robot 

after time interval Δt, it is necessary to replace variance of the 
term ωΔt in (20) by the used time model (16) that results in: 

  (26) 

After applying the replacement (26) in kinematic model (20) 

the next steps of the future pose estimation is rather 

straightforward, if we keep in mind that the mean value of the 

product of two normally distributed variables is affected both 

by the product mean values and variances like in (25). As said 

above, the result of those calculations is pose forecast 

expressed in the form (9) and (10). For shorter notation, let us 

substitute  by a: 

  (27) 

 

(28) 

Term (27) in further calculations is transformed into 

covariance matrix in the form (9) by replacing the main 

diagonal with the appropriate values of variances.  

Other sensor data processing requires less effort because 

they are not passed through the kinematic model.  

While providing means for error and position estimation 

equations (27) and (28) are rather complex, which means that 

every unnecessary operation may lead to increase of the error. 

Therefore we propose to use more direct approach that is 

described in the next section. 

 

 

VI. USE OF MULTIPLE SIGNAL RESPONSE FUNCTIONS 

To describe the approach it is necessary to look at the actual 

problem once again – here the input is defined by a vector 

, and the expected output from the forecast model 

is ], where v(t) – linear speed, and  – angular 

speed of the robot. This problem statement eliminates the 

unnecessary operations that were required to actually calculate 

the linear and angular speeds.  

Now, having in mind the definition of the model (12), it is 

possible to define the model in Laplace domain (29): 

 

  (29) 

Here, for a simpler notation the input vector is rewritten as 

.  

Knowing that Laplace transformation of the matrix (30) is 

matrix (31) with the transformed elements and having the 

transformations of product and convolutions i.e. (12) and (13) 

it is possible to rewrite (29) in time domain as (32): 

    (30) 

 (31) 

  (32) 

In the equation (32) step functions (see 14) , , 

 and  can be obtained empirically by simply 

switching on each motor at a full speed and collecting the 

actual  and  data until the speed difference over a 

single time step achieves 0 meaning that the top speed is 

reached and transient processes are finished (see figure Fig 

10).  

Here again we assume that both output functions are normally 

distributed random variables:  and . 

Now it is possible to rewrite the actual kinematic model: 

(33) 

In (33) R = v/ω. To estimate the variance and the final 

values of the model it is necessary to use algebra of random 

variables as it was described above.  

This approach allows to eliminate operations (17), (18) and 

(19), thus simplifying the overall calculations and reducing 

increase of the variance of the final pose estimation.  

VII. EXPERIMENTAL TEST OF THE MODEL 

To validate the proposed integrated localisation method we 

have developed an experimental simulation software that 

models differential drive robot in 2D environment by 

implementing the kinematic model (33). All noisy data is 
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assumed to be normally distributed random variables as it is 

stated throughout the paper.  

The developed software allows to set regions covered by 

glyphs and thus providing robot position data without growth 

of the estimation variance as it is explained in section IV. 

Along with the possibility to track a set of 100 possible robot 

positions according to the estimation variances, the software 

also provides the functionality to acquire signal transfer 

functions thereby simulating the noise caused by encoder 

inaccuracy and mechanical imperfection of the robotic system.  

Examples of signal transfer functions (29) are depicted in Fig. 

9, where t11 represents , t12 represents , t21 

represents   and t22 represents .  

  

Fig 9. Signal transfer functions acquired from noisy encoders data.  

All four functions were generated from the noisy encoders 

data depicted in Fig.10. 

 
Fig. 10. Noisy encoders readings.  

By using data readings from the encoders and passing 

through kinematics calculation we obtain one position 

estimation (black crosses in Fig. 11), while using signal 

transfer functions we acquire another position estimation (blue 

crosses in Fig. 11). In Fig. 11 pink rectangles are the regions 

covered by glyphs.  

As can be noticed in figure Fig 11, both estimations are 

comparable in terms of estimation distance from real position 

and in terms of confidence of the estimations, which variances 

are depicted in figures Fig 12 and Fig 13.  

In both cases the same encoder variances are used. 

Currently, the tests are performed by using numerical data of 

probabilities propagation, that is, the tests do not use the data 

from actual robots. Therefore, the expressions (27) and (28) 

are replaced by numerically close time series, thus simplifying 

the initial testing of the whole estimation mechanism. 

 

Fig. 11. Positions estimations based on encoders and signal transfer data 

(more than 9m travelled) 

 

Fig. 12. Variances of estimation acquired from encoders (PDF – probability 

distribution function) 
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Fig. 13. Variances of estimation acquired from signal transfer functions (PDF 

– probability distribution function) 

As it is described above, the proposed integrated method 

allows to combine landmark-based localisation with signal 

transfer based and wheel encoders based localisation 

techniques. The test run results are depicted in Fig. 14. 

(1)

(1)

(2)(3)

(4)

(5)

 

Fig. 14. Integrated position estimation: (1) – starting point, (2) – estimation 

based on signal transfers function (cross) and wheel encoders (circles), (3) – 

estimation based on landmarks, (4) – estimation based on signal transfers 

function and wheel encoders, (5) - estimation based on landmarks. More than 

20m travelled.  

In order to get the final estimation as explained above, we 

use equation (4) and (5) proposed by [7], which allows to fuse 

them if they are assumed to be normally distributed. A rather 

large distribution variance in position (3) is caused by sensor 

errors for simulation purposes only. These variances in real 

application are estimated empirically or are obtained from 

sensor specifications. 

VIII. CONCLUSIONS AND FUTURE WORK 

The proposed integrated robot localization method provides 

the means for localising robots in indoor environment through 

combination of artificial landmarks and other sensor data. We 

have proposed to use the signal transfer function along with 

other sensors providing means for position estimations from 

control signals as well as deal with sensor data reading 

latencies, where actual readings are replaced by sensor data 

time models based on signal transfer functions.  

According to the first numerical tests the proposed 

application of signal transfer functions can provide the 

estimation accuracy and confidence that is comparable to 

traditional sensor-based methods such as use of wheel 

encoders because signal transfer function based estimation 

takes into account all imperfections of the system including 

specifics of the environment like, for example, ground surface 

roughness.  

This enables to widen available positioning data sources as 

well as provides a back-up positioning method in domains 

where high reliability is required or cost effectiveness is 

crucial. We intend to apply this method in multi-robot system 

being developed for indoor use whenever glyph data is not 

available.  

Our future developments will focus on method field tests by 

using real differential drive robots as well as more accurate 

random noise distributions evaluations. Currently we assume 

them being normally distributed, which might not always be 

the case.  
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