
Applied Computer Systems

___ 2012 / 13

29

doi: 10.2478/v10312-012-0004-4

Ontology Merging in the Context of Concept Maps
Vita Graudina1, Janis Grundspenkis2, Sigita Milasevica3, 1-3Riga Technical University

Abstract – This paper proposes the approach to a concept map
merging using methods and tools developed for the same task in
the domain of ontologies. The developed method is based on ideas
that concept maps and ontologies have structural similarities,
and mutual transformations between them are possible therefore
tools and methods suitable for ontologies can be applied to
concept maps. Concept map merging is necessary to extend the
functionality of intelligent concept map-based knowledge
assessment system IKAS for reuse of captured concept maps.

Keywords – Ontology merging, concept maps, similarity

measures

I. INTRODUCTION

Since 2005 the concept map based intelligent knowledge
assessment system IKAS has been developed [1]-[6]. It is used
for students’ knowledge assessment and self-assessment.
Using the system students solve different concept map-based
tasks which are adapted to knowledge level of the particular
student [5]. During the years concept maps for several study
courses have been developed and stored in IKAS. After
analysis of IKAS functionality, it is found that it would be
useful to extend IKAS in direction of reuse of stored concept
maps outside knowledge assessment, particularly to merge
them for evaluation of study courses, their modules and a
whole study programme. To solve this task it is needed to find
or develop a method for concept map merging, and therefore
this paper is dedicated exactly to this issue. Ontologies have
some structural similarities with the concept maps, despite the
fact that the ontology structure is much more expressive and
more complex. During the research it has been stated that
similarities between ontology and the concept map do not
exclude mutual transformation, thus allowing the use of
already existing ontology processing methods and tools.

The aim of this paper is to demonstrate how to apply
already existing ontology merging tools to concept maps in
order to reuse them outside their traditional applications –
knowledge assessment.

The paper is organized as follows. Firstly, the paper gives
an overview of solutions existing for ontology merging, i.e.,
ontology similarity measures and tools for their computation.
Then main principles for concept maps transformation into
ontologies and vice versa are described. Further, experimental
results of concept map merging, applying ontology merging
tools, are shown. Finally, some conclusions are drawn and
future work is outlined.

II. ONTOLOGY MERGING

Ontology merging uses alignment to make one ontology
from two or more ontologies from related domains [7], [8].
Usually in the obtained ontology it is not possible to identify

the source ontology of the particular element. The main part of
ontology merging is ontology matching [8], which is related to
correspondence or relationship determination between
elements of different ontologies (Fig. 1). As a result of the
matching, there is alignment, which contains the set of
correspondences between elements of ontologies. Depending
on the algorithm used for ontology matching for some of
them, besides initial ontologies, additional parameters,
resources (for example, lexical database WordNet [9]), or
some alignment should be used as input.

Matching

parametrs

resources

Alignment’Alignment

Ontology1

Ontology2

Fig .1. Ontology matching [8]

In order to achieve the alignment, a degree of similarity of
elements of ontologies should be determined. Nowadays a
large number of similarity measures have been developed.
They can be divided based on similarity layers. Ehrig has
subdivided the following layers [7]:
 Data or symbolic layer compares elements of ontologies as

data values. Similarity measures used in data layer
compare strings (for example, names of classes), and
they are called symbolic measures while comparison of
sets of elements (for example, sets of subclasses of two
classes) is called object measures.

 Ontology or semantic layer compares elements of
ontologies taking into account semantic relations
between them.

 Context or pragmatic layer takes into account context of
element usage, for example, similar elements have
similar patterns of usage in the same context.

Ehrig’s proposed division of similarity measures together
with examples is shown in Fig. 2.

Today there are a large number of support tools for
ontology mapping or merging [10]. These tools can be
console-, web-based tools or tools with graphical user
interface. Their functionality reaches from completely manual
to fully automated ontology merging. Mostly ontology
matching is done manually, although this is time- and effort-
consuming work. Most of these tools are not available; some
of them are research prototypes. Therefore these ontology
merging tools are not suitable for a wide range of users,

Applied Computer Systems

2012 / 13 ___

30

Data layer
(symbolic)

Context layer
(pragmatic)

Ontology layer
(semantic)

Similarity measures

Symbolic measures:
Equality
Syntactic similarity (edit
distance measure)
Distance-based similarity
for numeric values

Object measures:
Object equality
Dice coefficient
Jacquard coefficient
Single linkage
Average linkage
Multi similarity

Label similarity
Taxonomic similarity for
concepts
Extensional concept similarity
Domain and range similarity
Concept similarity of
instances

Frequency of
elements

Fig. 2. Division of similarity measures, based on Ehrig [7]

because they require specific knowledge.
Euzenat & Shvaiko [8] have summed up 48 ontology

matching tools. Despite this quite a large number, not all of
them support exactly ontology merging. Only descriptions are
available for part of tools not tools themselves. Some of them
use specific data structures not only OWL, which is the most
frequently used ontology description language, which has
become the W3C standard. Thus, concept maps created with
the IKAS system should be transformed. Some other solutions
have specific requirements for an operating system. After
experiments with several tools the authors of this paper have
recognized plug-in PROMPT [11] for ontology editor Protégé
(http://protege.stanford.edu/) as the most appropriate tool.
During these experiments tools have been evaluated from the
point of view of such aspects as availability of documentation
and tool description, clearness of input and output format, as
well as user friendly installation and application.

PROMPT is a semi-automatic ontology merging and
alignment tool. It provides merging of two OWL ontologies,
despite the fact that this plug-in is compatible with previous
generation of Protégé tool and the new ontology has
“redundant” data (related to the ontology storage format in
that generation of the Protégé) which are included in tags:
<owl:Class rdf:ID="_DUMMY-FRAMES-METACLASS">;
<owl:Class rdf:ID="_DUMMY-FRAMES-METASLOT">;
<owl:Class rdf:ID="_TEMPORARY-ITEMS">;
<owl:ObjectProperty rdf:ID="_REFERENCES>.

When ontologies for merging have been chosen PROMPT

makes initial suggestions for a user, i.e., a list of elements
from source ontologies to merge or to copy to a new ontology.
Then a user chooses action and the tool updates the list of
suggestions, finds conflicts and generates new suggestions.
This process is shown in Fig. 3.

During the mentioned actions in the new ontology several
conflicts can arise [11]:
 name conflicts (several elements have the same name);
 reference to non-existing element;

 redundancy in a class hierarchy (there are more than one
path from a class to its parent class which is not a root
class);

 property restrictions, which violate class inheritance.

Fig. 3. Flow of the PROMPT algorithm [11]

For initial alignment PROMPT begins with the linguistic
similarity measures, which are extended with ontology
structure measures and user’s actions. The set of ontology
merging actions includes traditional ontology editing
operations, as well as specific operations for ontology merging
and aligning [11]:
 merge classes;
 merge properties;
 perform deep class coping, including coping of all

superclasses (up to root class) and coping of all classes
and properties related to the particular class;

 perform shallow class coping, coping only class without
superclasses or related properties.

From methods and tools mentioned above it is obvious that
in ontology engineering there are solutions for merging of two
ontologies into one. If concept maps are transformed into
ontologies then these solutions are applicable to concept map
merging. Therefore it is needed to perform transformation
from a concept map into an ontology which is described in the

Applied Computer Systems

___ 2012 / 13

31

Section 3. After ontology merging transformation from a
resulting ontology to a concept map is needed to get back a
concept map. The algorithm for this transformation is
described in Section 4.

III. A CONCEPT MAP TRANSFORMATION INTO ONTOLOGY

The algorithm for a concept map transformation into the
ontology should determine the type of relation between
concepts and based on the type it should be identified which
ontology elements correspond to related concepts [12]. The
mechanism build-in the algorithm determines the type of
concepts, i.e., it has information how to determine type of
relation and ontology elements from the name of link. In Fig.
4 schematically it is shown that exactly linking phrases
determine the type of related concepts and only semantic
(linguistic) and “part-whole” relations are directly
transformable into object properties.

Class

Concept

Linguistic linking
phrase or ’’’part-whole’’ Object property

Datatype property

Instance of class

Value of datatype propertyD
ep

en
di

ng
 o

n
lin

ki
ng

 p
hr

as
e

Fig. 4. Correspondence between elements of concept map and elements of
ontology [12]

In a concept map it is possible to determine the following
types of relations [12]:
 the hierarchal relation, where two classes are related with

linking phrases “is a”, “is a subclass of”, “is a subset of”;
 the instance relation, where a class is related to an instance

with linking phrases “is an instance of”, “is an example”;
 the whole-part relation where two classes are related with

the linking phrase “is a part of”;
 the hierarchal kind relation, where two classes are related

with the linking phrase “is a kind of”;
 the property relation, where a class or an instance is related

to a property with linking phrases “characterises”, “has a
property”, “has a property (object-property)”;

 the value relation, where a property is related to its value
with the linking phrase “has a value”;

 the compliment relation where two classes are related with
the linking phrase “not”;

 the semantic or linguistic relation, where two classes or
instances are related with any other linking phrase.

The algorithm for a concept map transformation into an
ontology consists of 7 steps [12] during which all elements of
a concept map are handled to determine their correspondence
to ontology elements and made appropriate ontology
constructions. The first 6 steps analyse linking phrases
included in a concept map. As a result, the type of related
concepts is determined, and accordingly it is added to the

ontology. Step 7 finds synonyms for concept map elements
because they are not defined with links but stored differently
in the structure of XML file.

Step 1: Find all concepts related with hierarchal relations.
Step 2: Find all concepts related with instance relations.
Step 3: Find all concepts related with property relations.
Step 4: Find all concepts related with value relations.
Step 5: Find all concept related with complement relations.
Step 6: Find all concepts related with part-whole or

semantic relations.
Step 7: Find all synonyms defined for concepts and linking

phrases. According to the determined pair of concepts in each
step, write the appropriate OWL code.

IV. ONTOLOGY TRANSFORMATION INTO A CONCEPT MAP

General correspondence between OWL ontology and a
concept map is shown in Fig. 5, where it is illustrated which
ontology elements directly correspond to concept map
elements, i.e. all ontology classes, instances, data type
properties and values of data type properties are concepts, and
object properties correspond to links in concept maps [13].
Besides these elements, there are found and summarized also
other OWL constructs, which describe different properties of
these elements that influence element transformation into a
concept map, for example, a construct defining that one class
is a subclass of another class [14].

Class

Object property

Datatype property

Instance of class

Value of datatype property

Concept

Link

Fig. 5. Correspondence between elements of ontology and elements of
concept map [13]

All cases of ontology transformations have been divided
into 3 groups [13]:
 Hierarchal relations between classes and instances – include

cases related to finding of ontology classes and their
instances and establishing hierarchal relations, i.e.
relations between a class and a subclass, between a class
and its instances, Boolean relations between classes,
synonyms of classes and instances, distinctions of classes
and instances.

 Semantic relations between classes and instances – include
cases related to finding of object properties which define
semantic relations between classes/instances.

 Property relations for classes and instances – include cases
related to finding of data type properties for
classes/instances and values of them.

Examples of the identified mappings between OWL
ontology and concept map are overviewed in [14]. The listings

Applied Computer Systems

2012 / 13 ___

32

of OWL code are followed by graphical representation of
corresponding concept map elements.

During operation of the algorithm from the ontology saved
in the text file an extended incidence matrix is obtained, where
names of concepts and their interrelations are stored, showing
the name of the link (linking phrase) and its direction. In
addition, this matrix is extended with one more column where
data about a type of concept or a label of concept type (a root
class – class without superclass, subclass, instance, property or
value) are stored. Basic steps for concept map generation from
the ontology are the following [13]:

Step 1: Read an ontology file and check OWL syntax.
Step 2: Find all classes (begin creation of an incidence

matrix).
Step 3: Find subclasses of each class (for particular class

add the link “is a”, which goes from a subclass to a superclass
in the matrix, add labels to root classes).

Step 4: For each class check intersection, union and
collection with other classes (add the link “is a” in the matrix
between appropriate classes).

Step 5: For each class check complement relations to other
classes (add the link “is not” in the matrix).

Step 6: Find instances of each class (add instances and links
“is instance of” between appropriate classes and instances
which go from an instance to a class in the matrix, add labels
to instances).

Step 7: Find data type properties for each class and instance
(add properties and links “has property” between appropriate
class/instance and a property in the matrix, add labels to
properties).

Step 8: Find values for each data type property (add values
of properties and links between a data type property and its
value “has value” in the matrix, add labels to values).

Step 9: For each class, instance and data type property
check equivalence (add the link “is synonym of” in the matrix
between appropriate elements).

Step 10: Find object properties for each class/instance (add
appropriate links between classes or instances in the matrix).

Step 11: Check if an object property is inverse, symmetric
or transitive (extend the matrix with appropriate links).

Step 12: Find hidden relations (relations, which can be
inferred using reasoners and are not directly defined in the
ontology).

Step 13: Perform corrections of concept and link names
(replace understrike sign “_” with space). This is needed
because spaces between words in the names of ontology
elements are not allowed and usually they are replaced with
“_”.

Step 14: Display completed incidence matrix as a graph
and save in XML accordingly to the format used in the IKAS.

V. EXPERIMENTS WITH CONCEPT MAP MERGING

With several concept maps created with IKAS, merging
experiments have been performed. During these experiments
the algorithm for concept map transformation into ontology
has been applied, then obtained ontologies have merged into

one using PROMPT, and finally one concept map has been
acquired.

In this Section concept maps used for merging, problems
emerged during transformation to ontology, results and
problems of merging have been described.

A. Concept Maps Used for Merging

In order to perform experiments, 9 concept maps created
with IKAS have been chosen. All concept maps belong to the
same problem domain, i.e. they all are prepared for different
study courses of the module “Artificial Intelligence” taught at
Riga Technical University:
 Five concept maps for the course “Fundamentals of

Artificial Intelligence”, taught to the 3rd year bachelors of
the academic programmes “Computer Systems” and
“Intelligent Robotic Systems”. These concept maps are
for topics “State Space” (62 concepts), “Search
Algorithms” (30 concepts), “Two Person Games” (46
concepts), “Knowledge Representation” (82 concepts)
and “Logics” (56 concepts).

 One concept map for the course “Introduction to Artificial
Intelligence”, taught to the 2nd year bachelors of the
academic programmes “Computer Systems” and
“Intelligent Robotic Systems” as an elective course, and
to the 3rd year bachelors of the professional programme
“Computer Systems”. The map contains 61 concepts.

 Three concept maps for the course “Artificial Intelligence”
taught to the 1st year Master students of the academic
study programmes “Computer systems” and “Intelligent
Robotic Systems”. The concept maps are for topics
“Introduction to Agents” (47 concepts), “Logical
Agents” (36 concepts) and “State Space Search Agents”
(29 concepts).

B. Some Problems with Concept Map Transformation
into the Ontology

The fact is that concept maps do not have formal rules for
their constructions, and the user is completely free in relating
concepts included in the concept map. It has led to a situation
that the concept map transformation into the ontology is not
fully automated. Creators of concept maps have used several
constructions which are not allowed in the OWL DL language
to keep the ontology computable.

During transformation the following cases are solved:
 Symbols forbidden in names of OWL ontology elements

have been used as names of concepts. For example,
spaces between words in element names are replaced
with _ as it is traditionally performed in the ontology
editor Protégé. Some other symbols as brackets, commas,
asterisks are omitted or the names are reformulated.

 A number as the first character is used for a concept name.
It is solved with replacing the number with letters
describing it. For example, a concept name “4-tuple” is
replaced with “Four-tuple”.

 Object properties with identical names and different
domains and ranges are not allowed in ontology;
therefore indices for the names of object properties are
added. Thus, for instance, object properties with names

Applied Computer Systems

___ 2012 / 13

33

“contains_1”, “contains_2” exist in the ontology. An
example of use of indices for linking phrase names is
shown in Fig. 6. For the linkage between concepts
“Variable CS” and “Current node”, “List DE” and
“Nodes whose successors do not contain a goal”, “List
NSL” and “Nodes waiting for opening”, the indices are
added because domains and ranges for each linking
phrase are different. For a linking phrase “uses”, indices
are not added because a domain is the same, and only a
range differs.

Backtracking

Variable
CS

Current node

List DE
Nodes whose
successors do

not contain goal

List NSL
Nodes waiting

for opening

uses

uses

uses

contains_1

contains_2

contains_3

Fig. 6. An example of links with indices and without them

Some linkages between concepts are not allowed between
corresponding elements in the ontology. Situations occurred
are listed below:
 Two concepts, which are properties, are interconnected. It is

not allowed in OWL DL; therefore, this link is deleted
from the concept map. See Fig. 7 where “Average
branching coefficient” and “Node branching factor” are
related.

Fig. 7. An example of a link between properties

 An instance of one class is a subclass of another class. In
this case instance relation is replaced with subclass
relation. For example, see Fig. 8, where the concept
“One step inference agent” is the instance of “Logical
reasoning agent” and “Simple reflex agent” and the
subclass of “Knowledge based agent”.

Fig. 8. An example of an instance as subclass

 A class has property and this property is further related with
linguistic link to another class which is not its domain.
To solve this case, a property link is replaced with a
linguistic linking phrase, which is allowed in this case
(see Fig. 9). This also changes the type of concept and it
becomes a class. After the change of concept type and
relation, the link is between two classes and a property is
not related to some other class, whose property it does
not belong to. The concept “Informed search algorithms”
has property “Information about a state quality”, which is
further related to the concept “Heuristics”.

Fig. 9. An example of a property related to two classes

 A class is a part of some instances. To solve this problem
instances are changed to subclasses and after that links
between parts and subclasses are allowed. For example,
see Fig. 10 where concepts “Propositional calculus” and
“Predicate calculus” are instances of “Logical knowledge
representation schemas” and at the same time the concept
“Semantics” is their part.

Fig. 10. An example of instance parts

Applied Computer Systems

2012 / 13 ___

34

To deal with problems mentioned above, several solutions
exist. Firstly, some automation may be added to IKAS to
check use of symbols in the concept names according to OWL
principles. This solution can seriously affect use of concept
maps for courses with a lot of formulas. Secondly, some
automation may be added to solve problems with impropriate
relations with particular types of concepts. Unfortunately, this
solution influences all subjects and is in conflict with the
principle of concept mapping that each person represents
knowledge in different ways [16].

C. Merging with PROMPT

The concept map merging has been performed in two
phases. Firstly, all five concept maps for the course
“Fundamentals of Artificial Intelligence” have been merged
into one concept map, also three concept maps for the course
“Artificial Intelligence” have been merged into one. This has
been done to obtain a single concept map for each study
course. Secondly, the merge of the concept map for
“Introduction to Artificial Intelligence” and the whole concept
map of “Fundamentals of Artificial Intelligence” has been
done, as well as the merge of the concept maps for
“Fundamentals of Artificial Intelligence” and “Artificial
Intelligence”. These merges have been done to see the
continuity and integrity of these particular subjects. In Fig. 11
the screenshot of the suggestions for merging within
PROMPT is shown. The result of merge of 2 concept maps
“Fundamentals of Artificial Intelligence” (MIP12) is merged

with the third concept map for the same course (MIP3). The
merge of 6 classes is recommended for initial suggestions. All
other classes are recommended to copy into the resulting
concept map.

D. Problems with Merging

As PROMPT is mainly based on syntactic similarities,
some problems occur. For example, PROMPT suggests to
merge the concept “Informed state search algorithms” with the
“Uninformed state search algorithms”, where the syntactical
similarity is very close but semantically these concepts are
completely different. Therefore, a user should be very careful
in reading suggestions generated by PROMPT. The second
problem is also related to the syntactic similarity and, in
particularly, to names of links. As it is described in Section IV
there could be several linking phrases with the same name in
the concept maps, which is not allowed in ontologies. It has
led to the fact that in ontologies there are links which differ
only by indices. It means that they are syntactically quite
similar and PROMT suggests merging those links. Therefore,
a user should be even more careful than in case of classes.

VI. THE EXPECTED USE OF MERGED CONCEPT MAPS

As stated above, the proposed approach of merging concept
maps has the objective to extend the IKAS functionality. We
intend to use merged concept maps for several purposes

Fig. 11. Initial suggestions for ontology merge generated with PROMPT

Applied Computer Systems

___ 2012 / 13

35

depending on what the particular merged concept map
represents, i.e. it may represent one study course, two or more
related courses or a study programme as a whole.

The typical situation when the necessity of merging concept
maps of one study course emerges is in case if several teachers
are responsible for the same course. Suppose that each of them
has a different view which concepts must be taught (the
situation when these views are absolutely contradictory is not
real). As a consequence, each teacher creates his/her own
concept map, which to a certain extent differs from those
constructed by other teachers. When merging is carried out, it
is easy to find a set of concepts and linking phrases which are
present in all initial concept maps, i.e. a set of those concepts
and linking phrases on which all teachers agree. Besides, a
merged concept map may be used as a basis for discussions
about other concepts with the aim to align versions.

Considering two or more related study courses, there are
two cases. First, one course is a prerequisite of another course.
Usually these courses are taught by different teachers. Their
merged concept maps may reveal that despite the description
of courses where needed prerequisite knowledge and learning
outcomes are clearly defined in fact there are not any common
concept at all or at best there are only a few of them, and it is
not enough to acquire the declared knowledge. Of course,
there may also be merged concept maps that manifest that one
course really contains all required prerequisite concepts for
another course. Second, several related courses may compose
a module, for example, as in case, which is analysed in this
paper (there is a sequence of three courses: “Introduction into
Artificial Intelligence”, “Fundamentals of Artificial
Intelligence” and “Artificial Intelligence”, which are taught at
different study years for Bachelor and Master studies). As a
rule, one teacher is responsible for teaching all courses of this
module. Since courses are related to a certain number of
concepts and their linking phrases are repeatedly taught, a
merged concept map shows these concepts, for example, in
our case there are 16 concepts which are common in the
courses “Introduction into Artificial Intelligence” and
“Fundamentals of Artificial Intelligence”, and 13 for courses
“Fundamentals of Artificial Intelligence” and “Artificial
Intelligence”. This information is useful for a teacher who can
consider at which level students must learn them in each
course (to know, to be able to explain, to have skills of real
life problem solving, etc.).
A merged concept map for a whole study programme allows
checking whether the corresponding graph is connected or not.
If it is connected then it indicates that study courses have
logical sequence and the requirements for prerequisites are
satisfied. Of course, if a graph is disconnected it means that a
programme consists of isolated “knowledge islands” (groups
of related courses), which lack relationships. It is worth
pointing out that this fact cannot be used for decision making
about the quality of a study programme because the latter in
our case includes general engineering courses, computer
science basic courses, courses from concentration areas,
courses in economics, social sciences, etc. It is obvious that in
case of merging concept maps of pairs of some

abovementioned groups of courses, all concepts will be
different. On the contrary, if a merged concept map of a whole
programme shows that, for instance, computer science basic
courses have not common concepts, it is evident that this part
of programme does not satisfy the quality requirements.

And last, but not least, a merged concept map offers rather
wide possibilities for knowledge remediation because if the
IKAS discovers that some concept or a linking phrase is not
mastered it can try to find the cause not only within “the
boarders” of a course under consideration but can look for
needed learning objects into a concept map of prerequisite
course.

One way is to use broader learning objects, which include
concepts and their relations according to the merged (full)
concept map. The contents of learning objects are composed
according to principles described in [17]. Depending on the
subgraph type, several concepts could be added from the
prerequisite concept map. An example of learning object
extension, based on merged concept maps, is shown in Fig.
12. A student has made an error in the link “a” in the concept
map A and therefore receives learning object LO1. Then using
the merged concept map, which contains concepts from
concept maps A and B, learning object LO1 is extended with
material about the concept “d” from the concept map B and a
student receives learning object LO2.

b

c
d

a
e

LO1 LO2

Concept map A Concept map B

Fig. 12. An example of the use of merged concept map in IKAS

Another way to extend IKAS functionality with merged
concept maps is to use them for additional testing to find more
precisely which non-mastered concepts from the prerequisite
concept maps are the reasons for errors made in the particular
one.

VII. CONCLUSIONS AND FUTURE WORK

The process of concept map merge using an ontology
processing tool has been described in this paper. Nine concept
maps from three different study courses of the module
“Artificial Intelligence” have been merged using the ontology
editor Protégé with the plug-in PROMPT.

Before merging concept maps they have been transformed
into ontologies using the algorithm previously developed.
During transformation several situations occurred where due
to complete freedom in concept map building involvement an
expert is needed. It happens because concept maps allow
constructions, which are forbidden in ontologies, to keep them
machine understandable and computable. The algorithms are
applicable also to concept maps built with other tools, not only

Applied Computer Systems

2012 / 13 ___

36

IKAS. Only some changes for detecting concept/relation types
more precisely may be added in the algorithm for concept map
transformation into ontology, due to the fact that different
linking phrases could be used.

Ontology merge is based on linguistic similarities in
PROMPT; therefore, a user should be careful accepting
suggestions for merge generated by PROMPT. Specially,
attention should be paid to object property merge.

Future work is related to development of methods for
interpretation numerical data obtained during merge, because
now it is still unclear if it is good or not if, for example, 10%
of classes could be merged. Also more representative
experiments with a larger set of concept maps are needed to
evaluate obtained results and to perform more general
conclusions. Moreover, IKAS will be extended with additional
features for student’s knowledge remediation based on merged
concept map analysis accompanied with studies related to
pedagogy.

ACKNOWLEDGEMENT

The research is partly supported by internal research project
of Riga Technical University FLPP-2011/8 “Development of
Ontology-Based Methods and Algorithms for Comparison and
Merging of Concept Maps of Different Related Study
Courses” and project “New Ontology and Model
Transformation Driven Information Technologies and Their
Applications” supported by National Research program of
Latvia in Materialsciences “Development of Novel
Multifunctional Materials, Signal Processing and Information
Technologies for Competitive Knowledge-Based Products”.

REFERENCES
[1] Anohina A., Grundspenkis J. Prototype of Multiagent Knowledge

Assessment System for Support of Process Oriented Learning. In
Proceedings of the 7th International Baltic Conference on Databases and
Information Systems (Baltic DB&IS 2006), July 3-6, 2006, Vilnius,
Lithuania, pp. 211-219.

[2] Anohina A., Grundspenkis J. Learner's Support in the Concept Map
Based Knowledge Assessment System. In Proceedings of the 7th
European Conference on e-Learning, November 6-7, 2008, Agia Napa,
Cyprus, Vol.1, pp. 38-45.

[3] Anohina A., Stale G., Pozdnakovs D. Intelligent System for Student
Knowledge Assessment. In Scientific Proceedings of Riga Technical
University, 5th Series, Computer Science. Applied Computer Systems,
Vol. 26, 2006, pp.132-143.

[4] Anohina A., Vilkelis M., Lukasenko R. Incremental Improvement of the
Evaluation Algorithm in the Concept Map Based Knowledge
Assessment System. In International Journal of Computers,
Communication and Control, 4(1), 2009, pp. 6-16.

[5] Grundspenkis J., Anohina A. Evolution of the Concept Map Based
Adaptive Knowledge Assessment System: Implementation and
Evaluation Results. In Scientific Proceedings of Riga Technical
University, 5th Series, Computer Science. Applied Computer Systems,
Vol. 38, 2009, pp. 13-24.

[6] Vilkelis M., Anohina A., Lukashenko R. Architecture and Working
Principles of the Concept Map Based Knowledge Assessment System.
In Proceedings of the 3rd International Conference on Virtual Learning
(ICVL 2008), October 31 – November 2, 2008, Constanta, Romania, pp.
81-90.

[7] Ehrig M. Ontology Alignment: Bringing the Semantic Gap. Berlin-
Heidelberg: Springer-Verlag, 2007, 247 p.

[8] Euzenat J., Shvaiko P. Ontology Matching. Berlin-Heidelberg: Springer-
Verlag, 2007, 333 p.

[9] Fellbaum C. (Ed.). WordNet: An Electronic Lexical Database.
Cambridge, MA: MIT Press, 1998, 422 p.

[10] Moser T., Schimper K., Mordinyi R., Anjomshoaa A. SAMOA - A
Semi-automated Ontology Alignment Method for Systems Integration in
Safety-critical Environments. International Conference on Complex,
Intelligent and Software Intensive Systems, Fukuoka, Japan, 16-19
March 2009, pp. 724-729.

[11] Fridman Noy N., Musen M.A. PROMPT: Algorithm and Tool for
Automated Ontology Merging and Alignment, In Proceedings of the
17th National Conference on Artificial Intelligence and 12th Conference
on Innovative Applications of Artificial Intelligence, July 30 - August 3,
2000, Austin, USA, pp. 450-455.

[12] Graudina V., Grundspenkis J. Algorithm of Concept Map
Transformation to Ontology for Usage in Intelligent Knowledge
Assessment System. International Conference on Computer Systems and
Technologies (CompSysTech'11), June, 16-17, 2011, Vienna, Austria,
pp. 109-114

[13] Graudina V., Grundspenkis J. Concept Map Generation from OWL
Ontologies. The 3rd International Conference on Concept Mapping,
September, 22-25, 2008, Tallinn, Estonia and Helsinki, Finland, 2008,
pp. 173-180.

[14] Graudina V. OWL Ontology Transformation into Concept Map. In
Scientific Proceedings of Riga Technical University, 5th Series,
Computer Science. Applied Computer Systems, Vol. 34, 2008, pp.80-91.

[15] OWL Web Ontology Language Guide. Available at:
http://www.w3.org/TR/owl-guide/ (accessed 27.09.2011)

[16] Novak J.D., Cañas A.J. The Theory Underlying Concept Maps and How
to Construct Them, Technical Report IHMC CmapTools. Revised 01-
2008, Florida Institute for Human and Machine Cognition, 2008, 36 p.
Available at http://cmap.ihmc.us/Publications/ResearchPapers/Theory
UnderlyingConceptMapsHQ.pdf (accessed 10.09.2011).

[17] Graudina V. Algorithms for Knowledge Remediation in Concept Map
Based Assessment System. 2nd International Workshop on Intelligent
Educational Systems and Technology-enhanced Learning (INTEL-EDU
2011), October 6, 2011, Riga Latvia. Local Proceedings of the 10th
International Conference BIR, Associated Workshops and Doctoral
Consortium, pp. 281-288.

Vita Graudina is a Researcher at Riga Technical University. She received
Mg.sc.ing. with distinction in computer systems in 2005 and Dr.sc.ing. in
2011, both from Riga Technical University. The topic of the doctoral thesis
was related to integration of ontologies in the intelligent concept map based
tutoring system IKAS. Her research interests are ontologies and their
applications in different fields, especially, in computer-based tutoring
systems.
E-mail: vita.graudina@rtu.lv

Janis Grundspenkis is a Professor at Riga Technical University. He is the
Dean of the Faculty of Computer Science and Information Technology, the
Director of the Institute of Applied Computer Systems, and the Head of the
Department of System Theory and Design. He obtained Dr.sc.ing. in 1972 and
Dr.habil.sc.ing. in 1993, both from Riga Technical University. His research
interests are artificial intelligence, particulararly agent technologies and
computer-based tutoring systems.

He is a member of the Institute of Electrical and Electronics Engineers
(IEEE) and Association for Computing Machinery (ACM). He is a full
member of the Latvian Academy of Science.
E-mail: janis.grundspenkis@rtu.lv

Sigita Milasevica received Mg.sc.ing. in computer systems from Riga
Technical University in 2011 and recently has started working in the industry.
Her research interests are concept maps, their evaluation and use in
knowledge assessment systems.

