Quasi-optimal PZT distribution in active vibration reduction of the triangular plate with P-F-F boundary conditions

Open access

Quasi-optimal PZT distribution in active vibration reduction of the triangular plate with P-F-F boundary conditions

An active reduction of transverse vibration of the triangular plate with P-F-F boundary conditions is considered. The cracked plate is idealized research model as partially clamped on one edge with varying clamped length. The active reduction is realised with PZTs. In the paper, assuming the detached base clamped length, the influence of PZTs distribution on the bending moment and the shearing force at the clamped edge is investigated. To realize the purpose two cases are considered. At the former the PZTs are attached at points in which the curvatures of the surface locally take their maximum (MC sub-areas or quasi-optimal ones). At the latter, the PZTs are somewhat shifted. The plate is excited with harmonic plane acoustic wave. The second mode is considered only.

The active vibration reduction study with a finite element method (FEM) is carried out. The numerical calculations show that better results are obtained for MC distribution of the PZTs.

A. Brański and S. Szela: On the quasi optimal distribution of PZTs in active reduction of the triangular plate vibration. Archives of Control Sciences, 17(4), (2007), 427-437.

A. Brański and S. Szela: Improvement of effectiveness in active triangular plate vibration reduction. Archives of Acoustics, 33(4), (2008), 521-530.

A. Brański and S. Szela: Evaluation of active vibration reduction of the triangular plate via acoustic field parameter. Open Seminar on Acoustics, Rzeszow-Przemyśl, Poland, (2007), 162-163, ISBN 83-91439-10-1.

S.E. Burke and J.E. Hubbard: Distributed transducer vibration control of thin plates. J. of the Acoustical Society of America, 90(2,) (1991), 937-944.

M.J. Croker: Handbook of noise and vibration control. Australia, John Wiley & Sons, 2007. ISBN 97-80471-39599-7.

S. Chakraverty: Vibration of plates. Boca Raton, London, New York, CRC Press, 2009, ISBN 97-81420-05395-1.

C.R. Fuller, S.J. Elliot and P.A. Nielsen: Active control of vibration. London, Academic Press, 1997, ISBN 97-80122-69440-0.

Z. Gosiewski and A. Koszewnik: The influence of the piezoelements placement on the active vibration damping system. Active Noise and Vibration Control Methods, Krakow-Krasiczyn, Poland, (2007), 69-79, ISBN 83-89772-41-8.

C.H. Hansen and S.D. Snyder: Active control of noise and vibration. London, E&FN SPON, 1997, ISBN 04-19193-90-1.

W. Karunasena, S. Kitipornchai and F.G.A. Al.-Bermani: Free vibration of cantilevered arbitrary triangular Mindlin plates. Int. J. of Mechanical Sciences, 38(4), (1996), 431-442.

S.W Kang and J.M. Lee: Free vibration analysis of arbitrarily shaped plates with clamped edges using wave-type functions. J. of Sound and Vibration, 242(1), (2001), 9-26, ISSN 0022-460X.

M.S. Kozień: Acoustic radiation of plates and shallow shells. Krakow, Cracow University of Technology, 2006, ISSN 0860-097X.

M.S. Kozień and J. Wiciak J: Acoustics radiation of a plate with line and cross type piezoelectric elements. Molecular and Quantum Acoustics, 24 (2003), 97-108, ISSN 1731-8505.

M.S. Kozień and J. Wiciak: Impact analysis of piezoelectric elements distribution on the acoustic radiation of the plate. Open Seminar on Acoustics, Gliwice-Szczyrk, Poland, (2003), 245-248, ISSN 0137-5075, (in Polish).

A.W. Leissa: Vibration of plates. Washington, NASA SP-160, D.C.: Office of Technology Utilization, 1969, Document ID 19700009156.

S. Mirza and Y. Alizadeh: Free vibration of partially supported triangular plates. Computers & Structures, 51(2), (1994), 143-150, ISSN 0045-7949.

S. Moaveni: Finite element analysis. Theory and application with ANSYS. Pearson, Prentice Hall, 2008, ISBN 97-80131-89080-0.

M. Pietrzakowski: Active damping of transverse vibration using distributed piezoelectric elements. Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, Poland, 2004, ISSN 0137-2335.

P.M. Przybyłowicz: Piezoelectric vibration control of rotating structures. Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, Poland, 2002, ISSN 0137-2335.

R. Singhal and D. Redekop: Vibration of right-angled triangular plates partially clamped on one side. J. of Sound and Vibration, 251(2), (2002), 377-382, ISSN 0022-460X.

T. Sakiyama and M. Huang: Free-vibration analysis of right triangular plates with variable thickness. J. of Sound and Vibration, 234(5), (2000), 841-858, ISSN 0022-460X.

J.M. Sullivan, J.E. Hubbard and S.E. Burke: Modeling approach for two-dimensional distributed transducers of arbitrary spatial distribution. J. of the Acoustical Society of America, 99(5), (1996), 2965-2974, ISSN 0001-4966.

A. Tylikowski: Control of circular plate vibrations via piezoelectric actuators shunted with a capacitive circuit. Thin-Walled Structures, 39 (2001), 83-94, Doi 10.1016/S0263-8231(00)00055-0.

Archives of Control Sciences

The Journal of Polish Academy of Sciences

Journal Information

IMPACT FACTOR 2016: 0.705

CiteScore 2016: 3.11

SCImago Journal Rank (SJR) 2016: 0.231
Source Normalized Impact per Paper (SNIP) 2016: 0.565


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 5
PDF Downloads 27 27 3