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Abstract: The validation of octanol-water partition coefficients (logP) quantum chemical calculations is 
presented for 27 alkane alcohols. The chemical accuracy of predicted logP values was estimated for six DFT 
functionals (B3LYP, PBE0, M06-2X, ωB97X-D , B97-D3, M11) and three implicit solvent models. Triple-
zeta basis set 6-311++G(d,p) was employed. The best linear correlation with the experimental logP values was 
achieved for the B3LYP and B97-D3  functionals combined with the SMD model. On the other hand, no 
linearity was found when IEF-PCM or C-PCM implicit models were employed.
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Introduction

The important biopharmaceutical properties that 
facilitate a drug entry into the body and across vari-
ous cellular barriers include its solubility, stability, 
permeability, and first pass effect (Planey, 2013; 
Arnott, 2012). Moreover, the pharmacokinetic 
properties, e.g. clearance rate, biological half-life 
and volume of distribution, represent the next 
specific characteristics (Pieńko, 2016) responsible 
for the efficient drug delivery to the target sites. 
The lipophilicity, which refers to the ability of a 
compound to dissolve in fats, oils, lipids and non-
polar solvents such as hexane or toluene, has long 
been recognized as an important factor for a drug 
successful passage through clinical development 
(Lombardo, 2000; Sârbu, 2012; Guillot, 2009; 
Komsta 2010). This quantity reflects the net result 
of all intermolecular forces involving a solute and 
the two phases between which it partitions (IUPAC, 
1997). Generally, the lipophilicity is expressed 
experimentally as the octanol-water partition 
coefficient P (logP) or as distribution coefficients 
(logD). The logP describes the partition equilibri-
um of an un-ionized solute, while logD determines 
the ratio of the sum of the concentrations of all 
forms of the compound (pH-dependent mixture 
of ionized and unionized forms) in each of the two 
phases. The accurate and efficient measurement 
of the lipophilicity is an important requirement 
in drug design. In practice, the theoretical logP 
values evaluated using the quantitative structure–
activity relationship (QSAR) models (Molinspira-
tion, 2016; Lee, 1988; Estrada-Tejedor, 2013) are 
often used instead of expensive experimental 
logP measurements. However, these QSAR logP 

values used for screening virtual libraries can be 
also inaccurate (Liao, 2008; Mikulski, 2010). They 
can cause potentially promising compounds to be 
discarded and/or potentially flawed compounds to 
move forward (Khan, 2016).
The partition coefficients are tightly related to 
the electronic structure of the solvated molecules, 
therefore the methods of quantum chemistry can 
be also employed in this type of research. Especially 
during the last decade, computational methods for 
the precise description of electronic structure of 
single, non-interacting relatively large molecules 
have become common (Burke, 2013; Rappoport, 
2008). On the other hand, the description of 
solvent-solute effects is not the trivial task and it 
brings a large number of unsolved problems. For 
example, the explicit inclusion of a solvent mo
lecules surrounding the investigated solute leads 
to a large number of geometrical structures and 
consequently to a rapid increase of computational 
times. Plenty of computational time can be saved 
by using the implicit solvent approximation. This 
approach assumes that solvent molecules can be 
replaced by a homogeneously polarizable and 
thermally averaged isotropic medium (Mennucci, 
2002). No explicit solvent molecules are present 
and no explicit solvent coordinates are given.
The polarizable continuum model (PCM) is a com-
monly used implicit method and it has seeded the 
birth of several variants (Tomasi, 2005; Cossi, 2003). 
This model is based on the Poisson-Boltzmann equa-
tion, which is an expansion of the original Poisson’s 
equation. Two types of PCMs are well-known: the 
dielectric PCM (D-PCM), in which the continuum is 
polarizable, and the conductor-like PCM (C-PCM), 
in which the continuum is conductor-like such 
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as COnductor-like Screening MOdel (COSMO) 
(Klamt, 1993). The implicit COSMO solvation 
model uses scaled conductor boundary condition, 
which is a fast and robust approximation to the 
exact dielectric equations and reduces the outlying 
charge errors as compared to PCM. The approxi-
mations lead to a root mean square deviation in the 
order of 0.3 kJ·mol–1 to the exact solutions (Klamt, 
2015). Finally, Solvation Model based on Density 
(SMD) has also seen wide spread use (Marenich, 
2009). This model starts from the generalized Born 
equation which is represented by the approximation 
of Poisson’s equation suitable for arbitrary cavity 
shapes. It should be mentioned that in quantum 
chemistry, where charge distributions come from 
ab initio methods and Density Functional Theory 
(DFT), the implicit solvent models represent the 
solvent as a perturbation contribution to the solute 
Hamiltonian.
Although the use of above mentioned implicit 
models for obtaining various properties of solvated 
molecules is straightforward, the reliability of the 
results still needs to be checked with respect to 
the experimental data. Therefore we decided to 
perform the validation study of 27 model primary, 
secondary and tertiary alcohols. The main goals of 
this work can be defined as follows:
a)	 to evaluate theoretically logP values for six 

distinct DFT functionals together with three dif-
ferent implicit solvent models;

b)	to correlate these quantities with the available 
experimental data;

c)	 to estimate chemical accuracy of tested ap-
proaches.

Finally, the quantum chemically evaluated logP 
values will be compared with the QSAR models.

Computational details

The quantum chemical calculations were per-
formed using Gaussian 09 program package (Frisch 
et al., 2009). The optimal geometries of the studied 
molecules were calculated in n-octanol and water by 
DFT method with six functionals: B3LYP (Becke’s 
three parameter Lee–Yang–Parr) (Lee et al., 1988; 
Becke, 1988), PBE0 (Perdew, Burke and Ernzerhof) 
(Perdew et al., 1996), M06-2X (Zhao et al., 2008), 
ωB97X-D (Chai et al., 2008), B97-D3  (Grimme et 
al., 2011), M11 (Peverati, 2011). The energy cut-off 
was of 10−5 kJ mol−1 and final RMS energy gradient 
was under 0.01  kJ mol−1  Å−1. Within all calcula-
tions, the 6-311++G(d,p) basis set was employed 
for all atoms (Hariharan et al., 1973; Rassolov 
et al., 1998). This basis set can provide reliable 
molecular geometries and reaction enthalpies and 
can be considered sufficiently large (Poliak et al., 

2013; Michalík et al., 2014; Škorňa et al., 2014). The 
influence of the solvents was approximated by three 
implicit continuum models, i.e. SMD, IEF-PCM 
and C-PCM. The optimized structures were con-
firmed to be real minima by vibration analysis (no 
imaginary frequencies). The theoretical logarithm 
of partition coefficient (DFT-logP) for the water/ 
n-octanol mixture was calculated according Eq. 1

	 DFT-l
2.303

water n-octanologP
G G

RT
=

-D D
	 (1)

where ΔG values are the Gibbs energies of the 
solvated molecules in the relevant solvent (Garrido, 
2012). Visualization of obtained theoretical results 
was done by Molekel program package (Varetto, 
2009).

Results and Discussion

From the geometrical point of view, the studied 
compounds consist of methyl, methylene bridge, 
methine and hydroxyl moieties connected by single 
bonds. This may lead to a large number of con-
formations. In many cases, the energy differences 
between the individual conformations are minimal 
and they can be uniformly thermally populated in 
real samples. Next, the free rotation of terminal 
alkyl moieties or hydroxyl groups is possible at the 
room temperature as the energy barriers for the 
rotation around single C—C and C—O bonds are 
very low. For the sake of simplicity, we decided to use 
in our calculations the consistent definition of the 
conformations for the individual series of studied 
alcohols. For example, the geometry optimisation 
of the primary and selected tertiary alcohols started 
from symmetric structures. The point group sym-
metry was fixed to Cs. Next, the starting geometries 
for the remaining non-symmetric molecules were 
derived from the addition of hydroxyl group to the 
symmetric alkyl chain. The notation and gas-phase 
geometries of all studied molecules are presented 
in Fig. 1.
The obtained gas-phase geometries were used as 
the starting geometries for the next geometry opti-
misation within the tested implicit solvent models. 
Then, based on the Gibbs energies, the logarithms 
of partition coefficients were evaluated (see Eq. 1). 
These theoretical results are presented in Tab. 1. 
The only negative logP value within SMD model 
was obtained for the smallest methanol molecule. 
The calculated lipophilicity values ranged from 
–0.35 to 3.87. The maximal positive value predicted 
B97-D3 functional for the largest primary alcohol, 
i.e. octan-4-ol. Interestingly, the logP values of 
2-butanol and tert-butanol are comparable. On the 
other hand, isobutanol has by about 15  % larger 
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1. Methanol (Cs) 2. Ethanol (Cs) 3. Propanol (Cs)

 

4. Butanol (Cs) 5. Pentanol (Cs) 6. Hexanol (Cs)

 

7. Isopropanol 8. Butan-2-ol 9. Pentan-2-ol

 

10. Hexan-2-ol 11. Pentan-3-ol 12. Hexan-3-ol

 

13. Heptan-3-ol 14. Heptan-4-ol 15. Octan-4-ol

 

16. Isobutanol 17. tert-Butanol 18. 2-Methyl-pentanol

 

19. 3-Methyl-butanol 20. 3-Methyl-2-butanol 21. 4-Methyl-2-pentanol

 

22. 4-Methyl-3-pentanol 23. 2,3-Dimethyl-2-butanol 24. 3,3-Dimethyl-2-butanol

 

25. 4,4-Dimethyl-3-pentanol 26. 2,4-Dimethyl-3-pentanol 27. 2,3,3-Trimethyl-2-butanol

Fig. 1. The notation and optimal gas-phase B3LYP geometries of the studied alcohols. The point group 
symmetry Cs is indicated in parentheses.
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Tab. 1.	 The LogP lipophilicity values of the studied alcohols calculated using different DFT functionals 
with SMD solvation model, the QSAR predicted MI-LogP and the experimental Exp-LogP (Khadi
kar et al. 2005) values.

No. Molecule B3LYP M06-2X PBE0 ~B97X-D B97-D3 M11 MI-LogP Exp-LogP

  1. Methanol –0.22 –0.29 –0.23 –0.26 –0.35 –0.35 –0.32 –0.764

  2. Ethanol 0.51 0.44 0.50 0.46 0.56 0.37 0.06 –0.235

  3. Propanol 1.10 1.01 1.07 1.04 1.15 0.95 0.56 0.294

  4. Butanol 1.65 1.57 1.63 1.59 1.71 1.51 1.12 0.823

  5. Pentanol 2.19 2.12 2.18 2.14 2.26 2.06 1.62 1.352

  6. Hexanol 2.76 2.69 2.75 2.72 2.86 2.64 2.13 1.881

  7. Propan-2-ol 0.78 0.80 0.85 0.79 0.90 0.72 0.42 0.154

  8. Butan-2-ol 1.35 1.27 1.39 1.42 1.39 1.27 0.92 0.603

  9. Pentan-2-ol 1.81 1.72 1.75 1.79 1.82 1.62 1.48 1.132

10. Hexan-2-ol 2.72 2.34 2.55 2.54 2.63 2.46 1.99 1.661

11. Pentan-3-ol 1.99 2.00 1.89 1.95 1.90 1.98 1.43 1.132

12. Hexan-3-ol 2.59 2.55 2.46 2.57 2.54 2.54 1.98 1.661

13. Heptan-3-ol 2.97 3.02 2.67 3.07 2.91 3.12 2.49 2.190

14. Heptan-4-ol 3.19 3.23 3.23 3.23 3.25 3.43 2.54 2.190

15. Octan-4-ol 3.79 3.81 3.75 3.81 3.87 3.79 3.05 2.680

16. Isobutanol 1.55 1.57 1.57 1.53 1.59 1.51 0.80 0.805

17. tert-Butanol 1.30 1.25 1.28 1.26 1.34 1.16 0.87 0.532

18. 2-Methyl-pentanol 2.64 2.42 2.57 2.60 2.70 2.34 1.99 1.693

19. 3-Methyl-butanol 1.86 1.79 1.85 1.89 2.01 1.66 1.33 1.280

20. 3-Methyl-2-butanol 1.88 1.81 1.86 1.75 1.93 1.69 1.17 1.280

21. 4-Methyl-2-pentanol 2.41 2.28 2.28 2.29 2.41 2.22 1.70 1.687

22. 4-Methyl-3-pentanol 2.39 2.05 2.26 2.36 2.37 1.99 1.67 1.687

23. 2,3-Dimethyl-2-butanol 2.51 2.03 2.39 2.28 2.52 1.73 1.61 1.529

24. 3,3-Dimethyl-2-butanol 2.17 1.95 2.01 2.12 2.05 1.87 1.75 1.480

25. 4,4-Dimethyl-3-pentanol 2.86 2.71 2.74 2.63 2.86 2.65 2.25 2.154

26. 2,4-Dimethyl-3-pentanol 2.85 2.74 2.69 2.65 2.96 2.62 1.91 2.148

27. 2,3,3-Trimethyl-2-butanol 2.47 2.56 2.42 2.39 2.42 2.21 2.19 1.996

Tab. 2.	 The line parameters and regression coef-
ficients for the dependence of Exp-LogP 
on the DFT(SMD)-LogP values.

DFT Functional Slope Intercept R

B3LYP 0.905(30) –0.582(67) 0.986

M06-2X 0.906(35) –0.497(76) 0.982

PBE0 0.940(37) –0.594(81) 0.981

~B97X-D 0.908(36) –0.539(78) 0.981

B97-D3 0.894(33) –0.576(76) 0.983

M11 0.863(48) –0.35(10) 0.964

logP value. These predicted trends very well agree 
with the experimental Exp-logP values published 
by (Khadikar et al. 2005) as well as with the li-
pophilicity parameters predicted by QSAR model 
Mol-Inspiration. Next, regression of Exp-LogP on 
the MI-LogP dependence provided equation:

Exp-LogP = 1.015(43) × MI-logP – 0.234(72)	 (2)

with the regression coefficient of 0.979. The cor-
relations between the experimental Exp-logP and 
DFT-logP values lead to linear dependences with 
the line parameters collected in Tab. 2. The mutual 
comparison of intercepts show that DFT(SMD) re-
sults are higher and uniformly shifted with respect 
to the experimental results. The best linearity was 
found for hybrid B3LYP (Fig. 2) and pure B97-
D3  DFT functional. On the other hand M11  per-
formed worst with regression coefficient R of 
0.964 being the only functional that did not surpass 
QSAR MI-LogP approach in terms of regression 
coefficients.
In the case of the IEF-PCM and C-PCM implicit 
models, all calculated logP values were found in 
relatively small interval from –0.39 to –0.50 for IEF-
PCM and from –0.33  to –0.26  for C-PCM model. 
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The direct comparison with the experimental or 
QSAR data reveals no linear correlation.

Conclusion

The validation of quantum chemical octanol-water 
partition coefficient (logP) calculations is presented 
for 27 primary, secondary and tertiary alkane alco-
hols. The chemical accuracy of predicted logP values 
was estimated for hybrid, pure and long-range DFT 
functionals represented by B3LYP, PBE0, M06-2X, 
B97-D3 and M11, ωB97X-D. The solvent effect was 
estimated using SMD, IEF-PCM and C-PCM implicit 
solvent models. The best correlation with the experi-
ment was achieved for SMD model combined with 
the B3LYP and B97-D3 functionals. Except M11, all 
functionals performed better that Molinspiration 
approach in lipophilicity prediction. However, the 
quality of obtained theoretical results was much 
more sensitive to the implicit solvation model selec-
tion than to the DFT functional. We can conclude 
that the C-PCM and IEF-PCM implicit models seem 
unsuitable for the quantum chemical logP predic-
tion probably due to the non-adequate description 
of solvent continuum.
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