
146 Acta Chimica Slovaca, Vol. 8, No. 2, 2015, pp. 146—151, DOI: 10.1515/acs-2015-0025

Utilization of parallel computing
in chemical engineering

Matej Danko, Juraj Labovský, Ján Janošovský,
Zuzana Labovská, Ľudovít Jelemenský

Institute of Chemical and Environmental Engineering,
Slovak University of Technology, Bratislava

ludovit.jelemensky@stuba.sk

Abstract: The main objective of the presented work was to explore the possibilities of parallel computing
utilization in chemical engineering. Parallel computers and principles of parallel computing are in brief
described in Introduction. The next part exposes the possibilities of parallel programming in Matlab and
C# programming language environment. The next three parts provide case studies of parallel computing in
chemical engineering. Each example of the benefits of HPC involves a comparison with its serial equivalents.

Keywords: parallel computing; parallel programming; chemical engineering

Introduction

The need for powerful computers has led to the
construction of massive parallel super-computers
enabling to understand phenomena such as ga
laxy formation, molecular dynamics and climate
change, among others (Navarro et al., 2014). Data
parallelism is a form of computing parallelization
across multiple processors in parallel computing
environments, focused on data distribution across
different parallel computing nodes. Not long ago,
parallel computers were associated with fairly large
machines, most of them running Linux, designed
for special computations requiring extreme per-
formance, such as quantum mechanical calcula-
tions, computational fluid dynamics, molecular
simulations, and chemical process optimization,
among other applications relevant to chemical
industry (Castier et al., 2014).
The first case study presented refers on a global
optimization method exploiting parallel compu
ters, used to fit the equation of state (EOS) parame
ters. Sometimes, model developers try to correlate
experimental data as precisely as possible, which
means that the global minimum of the objective
function is the desirable target. Locating the
global minimum of complicated functions, with
many state parameters or a massive number of
experimental data points, requires large compu-
tational effort and time consuming calculations,
often carried out using a single processor in a
personal computer (PC). Recent Windows ver-
sions of software such as Mathematica and Matlab
exploit data parallelism to speed up the calcula-
tions. Nonetheless, many legacy sequential codes
exist in languages such as Fortran and C#. Their
adaptation for maximum performance in parallel

computers may require extensive reprogramming
but substantial performance gains are possible in
certain applications with only a few changes in the
existing codes (Castier et al., 2014). This case study
shows that EOS parameter fitting is one of such ap-
plications comparing two types of software utiliz-
ing the Simplex algorithm in parallel computers,
applicable both in single multiprocessor PCs and
in cluster supercomputers.
The second presented case study shows the benefits
of parallelization of a large system of nonlinear
equations. The main goal was to design a technique
allowing the utilization of existing codes designed
for serial execution. As an example of this approach,
a model of a distillation column for ammonia puri-
fication is presented.
The third case study refers to heavily stochastic
modeling of virus membrane filtration, which is
characterized by very low need for process commu-
nication. This fact represents the highest benefit of
parallelization of the sequential code.

Case study — Global optimization

The problem of EOS parameters fitting is fre-
quently used and well-known in the chemical
engineering praxis. Probably the most challenging
task is related to multiple minima in objective func-
tions, each represented by a different parameter
set. The most straightforward procedure is based
on several runs of local optimization algorithms
from different initial estimates or using global
optimization methods. An important fact is that
these local minima have very often similar values
of the objective function but significantly different
values of the EOS parameters. Another challenge
of this approach is the selection of suitable starting

147Danko M et al., Utilization of parallel computing in chemical engineering.

points for the optimization and subsequent run of
an efficient optimization process.
Optimization of the parameters of a non-random
two-liquid model (short NRTL equation) for systems
ethanol-benzene and diethylamine-ethanol was
chosen as the case study. Ethanol-benzene equilib-
rium was described by 12 and diethylamine-ethanol
equilibrium by 18 experimental isobaric points.
The objective function used in the presented case
studies was in the form:

	 ()() ()22

2
1 1

exp expn n

exp calc

exp calc
k k exp

P P
f y y

P= =

æ ö÷-ç ÷ç ÷ç= - + ÷ç ÷ç ÷ç ÷è ø
å å 	 (1)

Here, the second equation term describes the impact
of the temperature difference on the total pressure.
Comparison of the experimental and optimized
data is depicted in Fig. 1.
The presented case studies were run on an 80 cores
computer cluster. To highlight the benefits of paral-
lelization, two different languages (platforms) were
used. The first chosen language was Matlab inclu
ding Parallel Computing Toolbox™. This program-
ming language has been developed by MathWorks
and it is currently very popular in engineering
and scientific disciplines as well as a teaching tool
in many courses. Parallel Computing Toolbox™
allows solving computationally and data-intensive
problems using multicore processors, GPUs, and
computer clusters. High-level constructs, parallel
for-loops, allows parallelizing applications without
CUDA or MPI programming. The presented strate-
gy is based on finding a suitable loop that allows the
code (objective function calculation) to be executed
in parallel. Initial estimates of the NRTL equa-
tion parameters from user defined interval were
randomly generated. Endurance testing was based
on the evaluation of 10 mil. of initial estimates and

every test was repeated five times. The resulting
time of endurance testing was defined as the ave
rage time of all five tests and differences in timings
were less than 5 %. In each testing of global optimi-
zation, global minimum of the objective function
was reached. Basic quantitative parameter, which
compares the efficiency of the parallel algorithms,
is the speedup (Sp) defined as the ratio between the
base serial program’s execution time (tseq) and its
parallel implementation execution time (tpar).

	 seq

p

par

t
S

t
= 	 (2)

Dependence of the execution time on the number
of cluster cores and the speedup of the parallel code
are depicted in the next series of figures (Fig. 2).
The second chosen platform was the .NET Frame-
work and the programming language C#. To paral-
lelize the algorithm, the MPI.NET library was used.
MPI.NET is a high-performance, easy-to-use imple-
mentation of the Message Passing Interface (MPI)
for Microsoft’s .NET environment. MPI is nowadays
a standard for writing parallel programs running
on a distributed memory system, such as a compute
cluster. MPI provides functions and subroutines to
control parallel computations and pass information
from one process to another. In a message-passing
system, different concurrently-executing processes
communicate by sending messages over a network.
Unlike multi-threading, where different threads
share the same program state, each of the MPI pro
cesses has its own, local, program state that cannot be
observed or modified by any other process except in
response to a message. Therefore, the MPI processes
themselves can be as distributed as the network per-
mits, with different processes running on different
machines or even different architectures. Speedup
of the parallel version is depicted in Fig. 3.

Fig. 1. t-x, y diagrams for binary systems used in the case studies: ethanol-benzen (left),
diethylamine-ethanol (right).

148

From Figs. 2 and 3 it is clear that the speedup of
parallel optimization is quite linear and the capa
city utilization of computer sources is higher than
90 % in both cases. There is a huge difference in the
timing of Matlab and MPI.NET implementations
caused by fact that Matlab is a scripting program-
ming language while a source code written in C#
is compiled into an intermediate language (IL) that
conforms to the Common Language Infrastructure
(CLI) specification and to the native code when
run.

Case study — Large system of nonlinear
equations

Parallelization of solving a large system of nonlinear
equations is the second presented case study. This
problem occurs frequently in numerical methods in
chemical engineering. To demonstrate the benefits
of parallelization, the standard algorithm for sol
ving a system of nonlinear equations implemented
in Matlab was modified.

The Newton’s method is a basic general purpose
approach for solving nonlinear equations providing
linear approximation to the nonlinear system based
on a Jacobian matrix. In the general form of the
Newton method, the iterations and phases of each
step have to be performed one after another in
order to preserve the correctness of the numeri-
cal algorithm. In general, the standard Newton’s
method comprises three basic steps:
1.	 estimation of the Jacobian — determined by

backward differential formulas,
2.	 solution of a system of linear equations (very

often large and sparse),
3.	 improvement of the previous estimate.
If the Jacobian is determined in each iteration,
it is always the most time consuming part of the
algorithm. On the other hand, parallelization of
the estimation of the Jacobian is quite a trivial task
as the columns of the Jacobian matrix can be pro
cessed independently.
The most universal solver for a system of nonlinear
equations presented in Matlab is the function fsolve

Fig. 2. Execution time and speedup as a function of the number of cluster cores.

Fig. 3. Execution time and speedup as a function of the number of cluster cores.

Danko M et al., Utilization of parallel computing in chemical engineering.

149

based on the interior-reflective Newton method and
employing the subspace trust-region method. The
default version of the algorithm uses sequential
approach for the determination of the Jacobian.
However, it allows overriding the estimation of the
Jacobian via solver option settings. As our primary
goal was to implement parallelization of the default
version the solver (without significant modifica-
tions of the existing code), the sequential version
of the Jacobian determination was replaced with a
parallel version which is the most straightforward
procedure. This approach allows utilizing the
benefits of parallelization without modifying the
existing users programs and default solver.
To demonstrate the simplicity and efficiency of
the presented approach, a case study focused
on the steady state simulation of a distillation
column for ammonia purification was prepared.
The mathematical model was described by MESH
equations; MESH being an acronym referring to
the different types of equation: Material balances,
vapour—liquid Equilibrium equations, mole frac-
tion Summations and enthalpy (H) balances. The
main idea is in the assumption that the vapor and
liquid streams leaving an equilibrium stage are in
complete equilibrium with each other and ther-

modynamic relations can be used to determine the
equilibrium stage temperature and relate the con-
centrations in the equilibrium streams at a given
pressure (Perry et al., 1997). A complete distillation
column is considered as a sequence of such stages.
A distillation column model is an ideal candidate
for the presented case study, as it allows increasing
the number of trays, which results in the increase
of the number of nonlinear equation to be solved.
In general, the number of all column equations is
NJ (2NI + 4) + 1, where NJ is the number of column
trays and NI is the number of components of the
separated mixture. Total material balance and ma-
terial balances of components on trays are linearly
dependent, which means that, the total number of
nonlinear equations of the distillation column is
NJ (2NI + 3) + 1 which is at the same time also the
number of unknown parameters. Table 1. presents
the execution times for four different numbers of
trays; all execution times are in seconds.
For better visualization of the results, a speedup
of the parallel code is depicted in Fig. 4. From the
pictures it is clear that the parallel version of the
algorithm is more effective than its serial equiva-
lent. On the other hand, in case of a 50 tray column
(200 nonlinear equations), the benefits of paralleli-

Tab. 1.	 Execution time as a function of the number of equations and cores.

Number

of trays

Number of cores

1 2 4 8 16 24 48 64 72 80

 50 13.9 8.3 6.2 4.3 3.2 3.1 3.1 3.5 3.8 3.5

 250 219.2 111.6 61.0 34.5 19.7 15.7 10.5 9.9 9.5 9.6

1000 1590.0 798.8 428.3 221.4 119.8 83.8 52.4 41.2 38.7 35.5

2500 15329.6 7697.3 4097.5 2099.8 1065.8 750.7 401.7 324.0 292.3 269.2

Fig. 4. Speedup of parallel code.

Danko M et al., Utilization of parallel computing in chemical engineering.

150

zation are evident when sixteen cores are employed.
Further increase in the core number did not pro-
vide a significant increase in the speedup, probably
due to the dominance of process communication
over the time consuming single calculations. If the
number of equations is higher, the capacity utiliza-
tion increases radically. In case of the largest system
investigated in the presented study, the measured
speedup was higher than 55.

Case study — Stochastic hydrodynamic
model of virus filtration

Solving problems of previous case studies required
the use of numerical methods. The third case study
on parallel computing in chemical engineering
refers to hydrodynamic model of virus membrane
filtration.

Virus filtration is a well-established method for the
minimization of the inherent risk of viral contami-
nation in the production of therapeutic proteins
(Miesegaes et al., 2009). Several recent studies have
reported a significant decline in virus retention
during the course of filtration through different
parvovirus filters (Lute et al., 2007; Hirasaki et al.,
1994; Omar and Kempf, 2002; Lutz et al., 2004;
Bolton et al., 2005). However, the mechanisms
controlling this loss of virus retention are still not
well understood (Bakhshayeshi et al., 2011). Our
hydrodynamic model is able to simulate the path of
a virus in the porous structure of a membrane. To
reach relevant and objective results, a high number
of viruses have to be tested on an adequate three
dimensional network of the membrane. Because of
the very small size of virus particles, the path of a vi-
rus in a membrane is random. This and other men-
tioned facts distinguish the third case study from
the previous two and make the model stochastic. It
means that partial tasks of the parallel program can
be absolutely mathematically independent with very
small need of process communication. To describe
porous structure of the membrane, parameters like
pressure and diameter of the pores were used. A
simple network model of the membrane is shown
in Fig. 5.
The movement of virus particles is affected only
by hydrodynamics. The presented case study was
run on an eight cores computer processor. As in the
first case study, two different languages (platforms)
were used to highlight the benefits of paralleliza-
tion. The first chosen language was Matlab and the
second one was C# utilizing the MPI.NET library.
The parallelization strategy was based on a paral-
lel for loop. Endurance testing was based on flow
simulation of 100 mil. of virus particles through a
network of the size of 20 × 20 × 20. Dependence

Fig. 5. Illustration of simple network model
of membrane.

Fig. 6. Execution time and speedup as a function of the number of cluster cores (Matlab).

Danko M et al., Utilization of parallel computing in chemical engineering.

151

of the execution time on the number of computer
processor cores and the speedup of the parallel
code in Matlab and C# language are depicted in the
series of figures below (Figs. 6 and 7).
From Figs. 6 and 7 it is clear that the speedup of the
parallel optimization is quite linear and the capacity
utilization of computer sources is higher than 99 %
in both cases.

Conclusions

In this paper, utilization of parallel computing in
chemical engineering simulations was investigated.
Several examples of the benefits of HPC were pre-
sented and their comparison with serial equivalents
is provided. To highlight the benefits of paralleli-
zation, two different languages (platforms) were
used. The first chosen language was Matlab inclu
ding Parallel Computing Toolbox™ and the second
chosen platform was the .NET Framework and the
programming language was C# using the MPI.NET
library. The routine problem of chemical engineer-
ing praxis — fitting EOS parameters was investi-
gated in the first presented case study. The speedup
of parallel optimization was quite linear and the
capacity utilization of computer sources was higher
than 90 % for both programming languages. The
second case study demonstrated benefits of paral-
lelization of solving a large nonlinear equations
system. This case study focused on the steady state
simulation of a distillation column. In the case of
the largest system (2500 trays), the measured speed
up was higher than 55, using an 80 cores cluster.
The most notable speedup of parallelization was
reached in the third case study. The reason of such
high speedup was the strictly stochastic character of
our hydrodynamic model of virus filtration. From
the presented case studies it is clear that parallel

computing is an effective tool for solving chemical
engineering problems. Despite the fact that mo
dern operating systems and hardware are very well
prepared for such applications, except for ANSYS
and PROCAST programs, parallel computing has
not yet been implemented in standard simulation
programs.

Acknowledgement
This work was supported by the Slovak Scientific Agency,
Grant No. VEGA 1/0749/15, the Slovak Research and
Development Agency APP-14-0317and by the OP Re-
search and Development of the project University Science
Park STU Bratislava, ITMS 26240220084, co-financed
by the Fund of European Regional Development.

References

Bakhshayeshi M, Jackson N, Kuriyel R, Mehta A, Reis
RV, Zydney AL (2011) Journal of Membrane Science
379: 260.

Bolton G, Cabatingan M, Rubino M, Lute S, Brorson
K, Bailey M (2005) Biotechnol Appl Biochem 42:
133—142.

Castier M, Checoni RF, Zuber A (2014) Brazilian Journal
of Chemical Engineering 31: 993—1002.

Hirasaki T, Noda T, Nakano H, Ishizaki Y, Manabe S-I,
Yamamoto N (1994) Polym J 26: 1244—1256.

Lute S, Bailey M, Combs J, Sukumar M, Brorson K (2007)
Biotechnol Appl Biochem 47: 141—151.

Lutz H, Ireland T, Bolton G, Siwak M (2004) BioPharm
International 17: 6.

Miesegaes G, Lute S, Aranha H, Brorson K, Flickinger
MC (2009) Encyclopedia of Industrial Biotechnology: John
Wiley & Sons, Inc.

Navarro CA, Hitschfeld-Kahler N, Mateu L (2014)
Communications in Computational Physics 15:
285—329.

Omar A, Kempf C (2002) Transfusion 42: 1005—1010.
Perry RH, Green DW, Maloney JO (1997) Perry’s chemical

engineers’ handbook. New York: McGraw-Hill.

Fig. 7. Execution time and speedup as a function of the number of cluster cores (C#).

Danko M et al., Utilization of parallel computing in chemical engineering.

