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Abstract: This work deals with the design and the application of a robust control to a chemical reactor. The 
reactor is exothermic one. There are two parameters with only approximately known values in the reactor. 
These parameters are the reaction enthalpies. Because of the presence of uncertainty, the robust output feed-
back is designed. Two robust controllers are designed, the fi rst one is based on the small gain theorem and the 
second one uses the H2/H∞ control techniques. The presented experimental results confi rm applicability of 
mentioned approaches to safe control of nonlinear processes.
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Introduction

In this paper the small gain theorem and the H2/H∞ 
control techniques are applied to control of a chemi-
cal reactor.
It is well known that the control of chemical reac-
tors represents very complex problem (Luyben 
2007; Molnár et al. 2002). Continuous stirred tank 
reactors (CSTRs) are often used plants in chemi-
cal industry and especially exothermic CSTRs 
are very interesting systems from the control 
viewpoint (Bequette 1991). The dynamic charac-
teristics may exhibit e.g. a varying sign of the gain 
in various operating points, the time delay or the 
non-minimum phase behaviour. Various types of 
disturbances also affect operation of chemical re-
actors, operation of chemical reactors is corrupted 
by different uncertainties. Some of them arise 
from varying or not exactly known parameters, 
as e.g. reaction rate constants, reaction enthalpies 
or heat transfer coeffi cients (Antonelli and Astolfi  
2003). All these problems can cause poor control 
response or even instability of classical closed-loop 
control systems.
Effective control of CSTRs requires application of 
some of advanced methods, as e. g. robust control 
(Gerhard et al. 2004; Tlacuahuac et al. 2005). Ro-
bust control has grown as one of the most important 
areas in the modern control design since works by 
(Doyle 1981; Zames 1983) and many others.
The classical small-gain theorem (Green and 
Limebeer 1994) is an important tool for analyzing 
the input-output stability of feedback systems and 
the tool for robust controller design for systems 
with unstructured uncertainty (Nešić and Liberzon 
2005; Karafyllis and Zhong-Ping 2007). Some non-
linear versions of the classical small-gain theorem 

are derived for input-output stability of nonlinear 
feedback systems. The notion of input-to-state sta-
bility (ISS) was originally introduced by Sontag 
(Sontag 1989). Following this, a nonlinear, genera-
lized small-gain theorem was developed (Jiang et al. 
1996). Stability of interconnections of ISS systems 
has been studied by many authors (Laila and Nešić, 
2003; Chaves 2005; Teel 2005; Angeli and Astolfi  
2007; Ito 2008).
H2 and H∞ control theories have been active areas 
of research for the years and have been success-
fully introduced to many engineering applications. 
H2 — optimization fi nds a controller which mini-
mizes the H2 norm of the closed-loop transfer 
function and internally stabilizes the system. The 
closed-loop transfer function to be minimized is 
located between the external signal and the control 
error signal (Kučera 2008). The polynomial solu-
tion of the standard H2 problem is proposed e.g. in 
(Henrion et al. 2005; Kučera 2007; Yang et al. 
2007). There exist various solutions also of the 
standard H∞ problem. While the H2 norm of a sig-
nal is the mean energy with respect to the fre-
quency, the H∞ norm is the maximum energy with 
respect to the frequency. If there are uncertainties 
in the system model, some quantity combining the 
H2 norm and the H∞ norm can be a desirable measu-
re of a system’s robust performance. Thus the 
mixed H2/H∞ performance criterion provides an 
interesting measure for the controller evaluation. 
The theoretic motivation for the mixed H2/H∞ 
control problem has been discussed in ((Doyle 
1984; Kwakernaak 2002; Scherer 2006).
In the presented paper, the small gain theorem 
and the mixed H2/H∞ control theory with pole-
placement are applied to robust controller de-
sign.



195Vasičkaninová A. et al., Robust control of a chemical reactor with uncertainties

Small gain theorem
Suppose that the transfer function of an uncertain 
continuous-time system with additive unstructured 
uncertainty has the form

 G(s) = Gn(s) + GΔa(s) = Gn(s) + Wa(s)Δa(s) (1)

where Gn(s) is the nominal model, Wa(s) is the weight 
function and Δa(s) is a category of uncertainties that 
satisfi es the condition Δa(jω) ≤ 1 for ∀ω.
The task is to fi nd a robust controller for control 
of the system (1). The design method is based on 
the small gain theorem (Green and Limebeer 1994; 
Veselý and Harsanyi 2007) and uses the fact that 
if a feedback loop consists of a stable systems and 
the loop-gain product is less than unity, then the 
feedback loop is internally stable. The other basis 
for the design is a fi xed point theorem known as the 
contraction mapping theorem (Khalil 1996).
According to the small gain theorem, following 
conditions have to be satisfi ed: the controller with 
the transfer function C(s) stabilizes the nominal 
model and for the open-loop transfer function L(s), 
the condition given in (2) also holds.

 L(s) = G(s)C(s), L(jω) < 1 (2)

The family of the controlled system transfer func-
tions G(s) creates a set, in which Gn(s) is the transfer 
function of the nominal system and Gk(s) is a trans-
fer function from the set G(s), which differs from 
Gn(s). Then, the value la(ω) can be calculated as the 
maximal value of modules as it is shown in (3)

 la(s) = maxGk(jω) – Gn(jω),

 ω  (0, ), k = 1, 2… (3)

The characteristic equation of the closed loop with 
the uncertain controlled system is

 1 + G(s)C(s) = 0 (4)

and after the substitution (1) into (4), we obtain

 ( ) ( ) ( ) ( )
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where T0(s) is the closed-loop transfer function with 
the nominal model and has the form
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The closed loop must be stable. The small gain 
theorem requires satisfying also the second condi-
tion. It follows from (5) that for the second term in 
(5) the following condition holds
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Then after the substitution s = jω we obtain
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The conditions Δa(jω) = 1 and Wa(jω) = la(ω) 
represent the worst cases and so, it is possible to 
rewritten (8) to the form
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Robust controller design is then based on fi nding 
parameters of the transfer function T0(s), the choice 
of the structure of the robust controller and calcu-
lation of the controller parameters.

Mixed H2/H∞ control synthesis
The role of H∞ is to minimize the disturbance effect 
on the system output whereas H2 is used to improve 
the transients against random disturbances.
Consider the plant model with the feedback as 
shown in Figure 1 (Bosgra and Kwakernaak 2000). 
The signal w represents the external input, z is 
the error of control, u is the manipulated variable 
vector, and y is the measured output. The block G 
is the generalised controlled process, and C is the 
compensator.

Fig. 1. Standard control confi guration.

The loop gain has a direct effect on important 
closed-loop transfer functions which determine the 
norm, such as the sensitivity S and the complemen-
tary sensitivity T. The sensitivity and the comple-
mentary sensitivity functions are given by

 S = (I + GC)–1

 T = (I + GC)–1GC (10)

The H2/H∞ problem represents fi nding a controller 
C which minimizes the mixed H2/H∞ criterion

 μ⏐⏐T∞⏐⏐2
∞ + η⏐⏐T2⏐⏐2

2 (11)

where, T∞(s) and T2(s) denote the closed-loop trans-
fer functions from w to z∞ and z2, respectively, μ and 
η are scalar factors.
Assume G has realization

 ẋ = Ax + B1w + B2u
 z∞ = C∞x + D∞1w + D∞2u
 z2 = C2x + D21w + D22u (12)
 y = Cyx + Dy1w + Dy2u
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where z∞ is the output associated with the H∞ 
performance, z2 is the output associated with the 
H2 performance (with the LQG aspects).
Let the closed-loop equations be

 ẋ cl = Aclxcl + Bclw
 z∞ = Ccl∞xcl + Dcl∞w (13)
 z2 = Ccl2xcl + Dcl2w

The closed-loop transfer functions T∞(s) and 
T2(s) are

 T2(s) = Ccl2(sI – Acl)–1Bcl + Dcl2

 T∞(s) = Ccl∞(sI – Acl)–1Bcl + Dcl∞ (14)

H∞ performance
Lemma 1: The closed-loop random Mean Square 
(RMS) gain for T∞(s) does not exceed γ if and only 
if there exists a symmetric matrix such that (Chilali 
and Gahinet 1996; Scherer et al. 1997):

  (15)

H2 performance
Lemma 2: The closed-loop H2-norm of T2(s), 
⏐⏐T2⏐⏐2

2 = tr(Ccl2x2CT
cl2), does not exceed ν if and 

only Dcl2 = 0 and there exist two symmetric matrices 
X2 > 0 and Q such that (Chilali and Gahinet 1996; 
Scherer et al. 1997):
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The H2 and the H∞-norm are objectives that mutually 
compete, therefore a controller is found by solving 
(10), restricted to the former LMIs constraints:

minimize ⏐⏐W1S⏐⏐2 subject to ⏐⏐W2T⏐⏐∞ < γ∞ (17)

Simulations and results

Consider a continuous-time stirred tank reactor 
(CSTR) with the fi rst order irreversible parallel 
exothermic reactions according to the scheme

 , ,A B A Ck k21

where B is the main product and C is the side 
product (Ingham et al. 1994; Vasičkaninová and 
Bakošová 2009; Vasičkaninová et al. 2011). The 
dynamic mathematical model of the reactor is 
obtained by mass balances of reactants, enthalpy 

balance of the reactant mixture and enthalpy ba-
lance of the coolant. Assuming ideal mixing in 
the reactor and the other usual simplifi cations, the 
simplifi ed nonlinear dynamic mathematical model 
of the chemical reactor constitute four differential 
equations
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The reaction rate coeffi cients are the non-linear 
functions of the reaction temperature being defi ned 
by the Arrhenius relations

 , ,k k e i 1 2RT
E

0i i
i

= =-  (22)

In (18) — (22), c are concentrations, T are tem-
peratures, V are volumes, ρ are densities, cp are 
specifi c heat capacities, q are volumetric fl ow rates, 
h are reaction enthalpies, A is the heat transfer 
area, ki is the heat transfer coeffi cient, ki0 is the 
pre-exponential factor, E is the activation energy 
and R is the universal gas constant. The subscript 
c denotes the coolant, the subscript v denotes the 
input and the superscript s denotes the steady-state 
values in the main operating point. The values of 
constant parameters and steady-state inputs of the 
chemical reactor are summarized in Table 1. Model 
uncertainty of the over described reactor follows 
from the fact that there are two physical parameters 
in this reactor, the reaction enthalpies, which values 
are known within following intervals (Table 2). The 
nominal values of these parameters are mean values 
of theirs intervals.
The reactions in the described reactor are exother-
mic ones and the heat generated by the chemical 
reactions is removed by the coolant in the jacket of 
the tank. The measured output is the temperature 
of the reaction mixture T, the coolant fl ow rate qc

 
is 

chosen as the control input.
The open-loop behaviour of the reactor was also 
studied using the data given in Table 1 and Table 
2. Because of the presence of uncertainties, the 
reacting mixture temperatures obtained for the 
nominal model and also for 4 vertex systems are 
shown in Figure 2, 0 — nominal system, 1 — h1min, 
h2min, 2 — h1max,, h2max, 3 — h1max, h2min, 4 — h1min, 
h2max.

Vasičkaninová A. et al., Robust control of a chemical reactor with uncertainties
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Robust controller design based
on the small gain theorem

A robust PID controller was designed for control 
of the reaction mixture temperature. The transfer 
functions for the nominal system and 4 vertex sys-
tems are found for the step change of the coolant 
fl ow rate qc from 0.004 m3 min–1 to 0.008 m3 min–1:

 ( ) 8 . . 1 . 1G s s s s5 184 58 08 3 2
1290

n 3 2=
+ + +

-  (23)

 ( ) 1 1 1G s s s s25 75 5
1580

1 3 2=
+ + +

-  (24)

 ( ) 2 1 1G s s s s16 108 8
1030

2 3 2=
+ + +

-  (25)

 ( ) . .7 1 . 1G s s s s91 125 60 5 3 5
1400

3 3 2=
+ + +

-  (26)

 ( ) 103.82 6.27 14.1 1G s s s s6
1200

4 3 2=
+ + +

-  (27)
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Tab. 1. Constant parameters and steady-state inputs 
of the chemical reactor.

Variable Unit Value

q m3min–1 0.015

V m3 0.23

Vc m3 0.21

ρ kg m–3 1020

ρc kg m–3 998

cp kJ kg–1 K–1 4.02

cpc kJ kg–1 K–1 4.182

A m2 1.51

k kJ m–2 min–1 K–1 42.8

k10 min–1 1.55×1011

k20 min–1 4.55×1025

E1/R K 9850

E2/R K 22019

cAv kmol m–3 4.22

cBv kmol m–3 0

cCv kmol m–3 0

Tv K 328

Tvc K 298

qs
c m3 min–1 0.004

Ts K 363.61

Ts
c K 350.15

cs
A kmol m–3 0.4915

cs
B kmol m–3 2.0042

cs
C kmol m–3 1.7243

Tab. 2. Uncertain parameters of the chemical reac-
tor.

Variable Unit Value

–h1min kJ kmol–1 8.4 × 104

–h1max kJ kmol–1 8.8 × 104

–h2min kJ kmol–1 1.62 × 104

–h2max kJ kmol–1 2.02 × 104

Fig. 2. Open-loop response of the CSTR — the reacting mixture temperature:
0 — nominal system, 1, 2, 3, 4 — vertex systems.
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The transfer function T0(s) is in the form

 ( )
( ) ( )

( )T s
G s D s rs

G s
  nnum nden

nnum
0 =

+
 (28)

The controller transfer function has the structure
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The parameter r is an optional parameter and the 
function T0(s) has to satisfy (9). The polynomial 
Dn den(s) is optional, too, and the following equation 
has to be satisfi ed

 Gn den(s) = Dn den(s)C(s) (30)

Unknown parameters are d1 = 4.4, c2 = 19.36, c1 = 8.8, 
c0 = 1 and they are calculated from

 85.184s3 + 58.08s2 + 13.2s + 1 =
 = (d1s + 1)(c2s2 + c1s + c0) (31)

The transfer function T0(s) is affected by the choice 
of the parameter r and has the form

 ( )T s
d rs rs 1

1
  

0
1

2
=

+ +
 (32)

The choice of r depends on the control signals 
boundaries, too. In Figure 3 the reference trajec-
tory and the reacting mixture temperature obtained 
using the PID controller with parameters r = 500, 
P = –1.76 × 10–2, I = –2.0 × 10–3, D = –3.87 × 10–2 for 
the nominal model and also for 4 vertex systems are 
shown. Here, 0 is the nominal system and the vertex 

systems are the following combinations: 1 – h1min, 
h2min, 2 – h1max, h2max, 3 – h1max, h2min, 4 – h1min, h2max.
Figure 3 presents the set-point tracking and the dis-
turbance rejection in the reactor. The disturbances 
were represented by the feed temperature changes 
of the reaction mixture. Following load distur-
bances were supposed: the feed temperature for the 
reaction mixture decreased by 5 K at t = 100 min, 
increased by 3 K at t = 300 min, decreased by 6 K at 
t = 500 min.
Figure 4 presents the control signal for the set-point 
tracking and the disturbance rejection.

H2/H∞ control
The transfer function describing the nominal 
system was supposed for the controller order reduc-
tion in the form (33) with parameters: K = –1266, 
T = 7 min, n = 2. These parameters were used for 
the H2/H∞-controller tuning.

 ( ) ( )G s
Ts

K
1 n=

+
 (33)

The controller was found in the form

 ( ) . . .
. . .C s s s s

s s
3 9507 7 6899 0 1048

0 2759 0 0903 0 0084
3 2

2

=
+ + +

- - -  (34)

In Figure 5 the reference trajectory and the react-
ing mixture temperature obtained using H2/H∞ 
controller for the nominal model and for 4 vertex 
systems are shown. The H2/H∞ controller attenu-
ates disturbances fast and the overshoots caused 
by disturbances are minimal. The trajectory of 
the controlled variable are almost identical for the 
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Fig. 3. Small-gain control of the CSTR — the reacting mixture temperature:
0 — nominal system, 1, 2, 3, 4 — vertex systems.
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nominal and all vertex systems. Figure 6 presents 
the simulation results for the control signal.
The comparison of the proposed controllers was 
made using IAE and ISE integral performance 
indexes described as follows:

  (35)

The IAE and ISE values are given in Table 3. 
Smaller IAE and ISE values were obtained using 
H2/H∞-controller. The lower IAE and ISE values 
were achieved by increasing of the r value.

Vasičkaninová A. et al., Robust control of a chemical reactor with uncertainties

Fig. 4. Small-gain control of the CSTR — the coolant fl ow rate:
0 — nominal system, 1, 2, 3, 4 — vertex systems.

Fig. 5. H2/H∞-control of the CSTR — the reacting mixture temperature:
0 — nominal system, 1, 2, 3, 4 — vertex systems.

Tab. 3. Comparison of the simulation results by 
IAE and ISE.

control
small-gain control H2/H∞-controller

IAE ISE IAE ISE

nominal system 218 764 186 577

vertex system 1 208 707 178 532

vertex system 2 234 848 199 638

vertex system 3 215 752 190 584

vertex system 4 224 785 186 576
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Fig. 6. H2/H∞-control of the CSTR — the coolant fl ow rate:
0 — nominal system, 1, 2, 3, 4 — vertex systems.

Conclusions

The robust controllers have been applied to the 
control of the exothermic CSTR with uncertain 
parameters. The controllers were designed using 
the small gain theorem and the H2/H∞ control 
techniques. Simulations confi rmed that designed 
controllers can be successfully used for control of 
CSTRs with uncertainties and disturbances, even 
though the CSTRs are very complicated systems 
from the control point of view. All simulations were 
done using MATLAB. Simulation results obtained 
using designed controllers were compared using 
integral quality criteria IAE and ISE. The presented 
results provide satisfactory control responses for the 
set-point tracking as well as for the step load distur-
bance attenuation. The achieved simulation results 
confi rm that the small-gain control and the H2/H∞ 
control are some of the possibilities for successful 
control of the chemical reactor.
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