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Abstract: The paper addresses a case study of robust stabilization of a continuous stirred tank reactor using 
robust model-based predictive control with constrained input variables. One exothermic reaction runs in 
the reaction mixture and the reactor is modelled in the form of an uncertain polytopic system. The control 
approach is based on solution of a set of linear matrix inequalities. This formulation enables to use convex 
optimization methods to design a gain matrix of a state feedback controller in each control step. The task of 
stabilization is solved in assumed control conditions with respect to symmetric constraints on control inputs. 
The control performance achieved by robust constrained model-based predictive control is studied via simula-
tions. Obtained results confi rm that the robust constrained model-based predictive control ensures the stability 
demands and the quality requirements represented by chosen quadratic cost function.
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Introduction

The main task of robust control is to ensure the 
stability of the feedback control loop and to reach 
required quality of control performance in the 
presence of uncertainty in the controlled system. 
Robust constrained model-based predictive con-
trol (MPC) is capable to handle the task of robust 
control in an effective way taking into account the 
constraints on control inputs and outputs (Pannoc-
chia et al. 2011).
Continuous stirred tank reactors (CSTRs) rep-
resent typical systems with uncertainties because 
they have parameters varying in certain intervals 
or constant parameters with not exactly known 
values. Many authors deal with control of CSTRs. 
Partial enumeration (PE) method for fast offset-
free robust MPC control of a CSTR is presented in 
the paper by Pannocchia et al. (2011). The authors 
show that the strong robust exponential stability 
of the closed-loop system under PE-based MPC 
holds for any suffi ciently small but otherwise 
arbitrary perturbation. The disadvantage of the 
proposed strategy is a suboptimal solution of the 
optimization problem. Nonlinear adaptive control 
of a CSTR is studied by Dostál et al. (2011). The 
control strategy is based on the factorization of the 
controller into a nonlinear and linear part. The 
designed controller can be tuned by closed-loop 
pole assignment. This approach does not handle 
uncertainties in the controlled process. Favache 
and Dochain (2010) deal with the design of power-
shaping control of a non-isothermal CSTR. This 
control approach for nonlinear systems is based 

on the physics of the dynamical system. The main 
limitation of the strategy is the necessity to solve 
the partial differential equations that represent 
constraints of an optimization problem. An on-
line iterative algorithm of the robust MPC design 
for the quasi-linear parameter varying (quasi-LPV) 
CSTR with bounded disturbance is presented 
in the paper Ding (2010). The quasi-LPV means 
that the varying parameters of the linear system 
are known at the current time, but unknown in 
the future. The control law is parameterized as a 
parameter-dependent dynamic output feedback 
and the closed-loop stability is specifi ed by the 
notation of quadratic boundedness. Convex 
optimization problem is solved via linear matrix 
inequalities (LMIs) techniques. Kvasnica et al. 
(2010) present application of hybrid MPC applied 
to a CSTR. A nonlinear system is approximated 
by piecewise affi ne (PWA) functions to decrease 
the model complexity. Accuracy of this strategy 
was evaluated using simulation of control. The 
approach does not take into account uncertainties 
in the controlled system. The on-line constrained 
robust MPC guaranteeing quadratic stability of 
linear systems based on the LMIs formulation is 
presented in Kothare et al. (1996). An advantage 
of this approach is infi nite prediction horizon. 
On the other hand, only symmetric constraints 
on control inputs and outputs are considered. Ex-
plicit MPC reformulation of previous algorithm is 
presented in Wan and Kothare (2003). Improved 
strategy of robust MPC design with reduced range 
of conservatism and extended feasible set of initial 
conditions is introduced in Cuzzola et al. (2002). 
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This control scenario defi nes the parameter-
depended Lyapunov functions (PDLFs) for each 
vertex of an uncertain system.
This paper studies robust constrained MPC sta-
bilization of an unstable and uncertain CSTR. 
Hydrolysis of propylene oxide to propylene glycol 
runs in the reaction mixture in the reactor (Mol-
nár et al. 2002). Three uncertain technological 
parameters of the CSTR are considered. There-
fore the set of eight different vertex systems was 
generated. The main task is to ensure stability 
and required control performance of the whole 
unstable uncertain system. The considered con-
trol algorithm uses infi nite prediction horizon. 
Solution of convex optimization problem is not 
suboptimal, and conservativeness is reduced 
using various PDLFs. Symmetric constraints on 
control inputs are taken into account. The paper 
is organised as follows. Theoretical backgrounds 
of the control approach are given at fi rst. Then, 
the benchmark CSTR and the control conditions 
are introduced and obtained simulation results 
are presented. Conclusions are formulated in the 
last section.

Theoretical

Uncertain State-Space System
Suppose that an uncertain linear controlled system 
is represented by a discrete-time state-space system 
in the form given by Eq. (1)
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where k represents the discrete time, Ω is a convex 
hull of all vertex systems of the system (1) and it is 
a polytop, Nv is the number of vertex systems, x(k) 
is the Nx-dimensional vector of states, u(k) is the 
Nu-dimensional vector of control inputs, y(k) is the 
Ny-dimensional vector of outputs and matrices Av, 
Bv, Cv have appropriate dimensions. The control 
input u(k) has to be found so that the quadratic cost 
function
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is minimized, where N is the number of control 
steps and Q > 0, R > 0 are real symmetric weight 
matrices of system states x(k) and control inputs 
u(k), respectively. The quality of control depends 
on the possibility to take into account the symmetric 
constraints on controlled outputs and control inputs 
described by Eq. (3)
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where ymax, umax are the vectors representing the 
maximal admissible distance from the operat-
ing point, |uj(k)| is the symmetric peak norm, 
||y(k)||2 and ||u(k)||2 are the Euclidean norms of 
system outputs y(k) and inputs u(k), respectively.

LMI-Based Robust Constrained MPC Stabilization
The main task of robust constrained MPC stabiliza-
tion is to design a state feedback control law (Koth-
are et al. 1996, Wan and Kothare 2003, Cuzzola et 
al. 2002)

 u(k) = Fkx(k) (4)

where the matrix Fk represents the robust controller 
in the k-th control step. To design the gain matrix 
Fk, the approach described in Cuzzola et al. (2002) 
will be applied. For the Lyapunov matrix Pk, v of the 
v-th vertex system and for the feedback controller 
Fk following conditions hold

 ,X P Y F W, ,k v k k v k k k
1m= =-  (5)

where λk is the auxiliary optimization parameter 
and Xk, v = Xk, v

T > 0, Wk > 0 and Yk represent real 
auxiliary optimization matrices enabling the evalu-
ation of the robust feedback controller matrix Fk in 
the form (Cuzzola et al. 2002)

 F Y Wk k k
1= -  (6)

The robust constrained MPC design can be trans-
formed into the solution of a convex optimization 
problem based on the linear matrix inequalities 
(LMIs), using substitutions and Schur complement 
formula (Cuzzola et al. 2002)

 min , ,W X Y k,k k v km  (7)
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where the symbol * denotes the symmetric structure 
of the matrix and I represents an identity matrix of 
appropriate dimensions. The LMIs represent power-
ful technique to obtain the control problem in more 
tractable form of convex optimization problem that 
is solved in each control step in effective way.
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The symmetric Euclidean norm constraints on 
control inputs u(k) in the form of Eq. (3) can 
be added to the convex optimization problem 
described by Eqs. (7)—(9) in the form of the fol-
lowing LMI
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The symmetric peak norm constraints on control 
inputs u(k) in the form of Eq. (3), can be added to 
the optimization problem Eqs. (7)—(9) in the fol-
lowing LMI form
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where for each diagonal element of the matrix Uk 
hold the inequality (Cuzzola et al. 2002)
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Similarly, the symmetric Euclidean norm con-
straints on controlled outputs y(k) in the form of 
Eq. (3), can be added into optimization problem in 
the following LMI form
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The convex optimization problem is solved in each 
control step k of the discrete-time domain, there-
fore it is necessary to fi nd proper value of sampling 
time tS. Then the algorithm of robust constrained 
MPC can be formulated as follows (Cuzzola et al. 
2002):
1. Set initial value of the control step parameter 

k = 0.
2. Set required number of control steps N, initial 

conditions of system states x(0), values of the 
symmetric constraints on control inputs umax and 
outputs ymax.

3. Set control step parameter k = k + 1.
4. Measure or estimate the values of system states 

x(k).
5. Solve the convex optimization problem described 

by Eqs. (7)—(13) to evaluate the matrices Wk, Xk 
and Yk.

6. Design the gain matrix Fk of the feedback con-
troller using Eq. (6).

7. Calculate the control input u(k) using the control 
law Eq. (4).

8. If the parameter k < N then go to the Step 3 else 
Stop.

Experimental

Controlled Process Description
Continuous-time stirred reactor (CSTR) has been 
adopted from (Molnár et al. 2002) and represents 
the controlled process. The propylene glycol 
(C3H8O2) is produced in the reactor by hydrolysis 
of propylene oxide (C3H6O). The exothermic fi rst-
order chemical reaction with respect to propylene 
oxide as a key component is

 <,C H O H O C H O H 0CH OH
r3 6 2 3 8 2

3 D+  (14)

The methanol (CH3OH) is added into reaction 
mixture to improve solubility of propylene oxide 
in water (H2O). The excess of water ensures higher 
selectivity of the main product and prevents ineli-
gible side reactions (Molnár et al. 2002). Hereafter 
the subscripts PO and PG denote source compound 
propylene oxide and main product propylene gly-
col, respectively. The parameters of the CSTR are 
summarized in the Table 1, where V, VC are volumes 
of the reactor vessel and cooling jacket, respectively. 
Parameters ρ, ρC denote densities, cp, cp, C are ther-
mal capacities, q, qC are volumetric fl ow rates and 
T0, TC, 0 are inlet temperatures of reaction mixture 
and cooling medium, respectively. Coeffi cient Ah is 
the heat transfer area of the reactor vessel and the 
constant g represents the ratio of activation energy 
and universal molar gas constant.

Tab. 1. Parameters of the CSTR.

Variable Value Unit

V 2.4 m3

VC 2.0 m3

ρ 947.19 kg m–3

ρC 998.00 kg m–3

cP 3.719 kJ kg–1 K–1

cP, C 4.182 kJ kg–1 K–1

q 0.0720 m3 min–1

qC 0.6307 m3 min–1

cPO 0.0824 kmol m–3

cPG 0.0000 kmol m–3

T0 299.1 K

TC, 0 288.6 K

Ah 8.695 m2

g 10 183.0 K

The admissible boundary values of uncertain 
parameters are in the Table 2, where ΔrH is the reac-
tion enthalpy of the exothermic reaction described 
by Eq. (14), k0 denotes the pre-exponential factor of 
Arrhenius equation, see e.g. Bakošová et al. (2009), 
and U represents the heat transfer coeffi cient.
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Tab. 2. Uncertain Parameters of the CSTR.

Variable Minimal Value Maximal Value Unit

ΔrH –5.64 ×106 –5.28 ×106 kJ kmol–3

k0 2.4067 ×1011 3.2467 ×1011 min–1

U 13.11 14.49 kJ min–1 m–2 K–1

The continuous-time model of the CSTR is 
composed of four differential equations based on 
the material and enthalpy balances, see Molnár et 
al. (2002), Bakošová and Oravec (2012), Bakošová 
et al. (2009).
Nominal system is the model of the CSTR 
obtained using mean values of interval parametric 
uncertainties (Table 2). Vertex systems are models 
generated for all combinations of all boundary 
values of uncertain parameters. For the controlled 
system with three interval parametric uncertainties 
Nv = 23 = 8 vertex systems were generated. The set 
Ω given by Eq. (1) is defi ned as a convex hull of ver-
tex systems. The convex hull includes all possible 
uncertain systems. Therefore the set of investigated 
systems is reduced into the eight vertex systems and 
the set is extended by the nominal system of the 
CSTR as the reference system. The fi nal set of nine 
systems was transformed from the continuous-time 
into the discrete-time domain using sampling time 
tS = 0.5 min.

Results and Discussion

The steady-state analysis of the CSTR was done 
at fi rst (Bakošová and Oravec, 2012). The results 
obtained for the nominal system are displayed in 
the Fig. 1, where the curve QGEN (solid) represents 
heat generated by the exothermic reaction given in 
Eq. (14) and the line QOUT (dashed) denotes the heat 
withdrawn from the reaction vessel by the product 
stream and cooling jacket.
The steady states of the CSTR are represented by 
the intersections of the curves. The steady state is 
stable if and only if the slope of the QOUT line is 
higher than the slope of the QGEN curve. As can be 
seen in Fig. 1, the reactor can operate in three steady 
states. The stability condition is satisfi ed in the 
steady-states at the temperatures T1

S = 296.7 K and 
T3

S = 377.5 K and is not satisfi ed at the temperature 
T2

S = 343.1 K. The steady-state analysis of all vertex 
systems gives similar results. Control of reactors 
around theirs unstable steady-states is often inter-
esting because of economic performance or safety 
problems. Hence the aim of robust control of the 
described CSTR is to stabilize it in the surround-
ings of the unstable steady-state at the temperature 
343.1 K so that the cost function given by Eq. (2) is 
minimized, where Q = diag([100; 100; 0.01; 0.01]T) 

and R = diag([100; 100]T). The controlled outputs 
are temperatures in reaction vessel T and cooling 
jacket TC. Assumed control inputs are volumetric 
fl ow rates of reaction mixture q and cooling medium 
qC. Thus we have multiple-input and multiple-
output (MIMO) system. The constraints on control 
inputs were considered to prevent calculating nega-
tive values of fl ow rates, therefore umax = [0.0720; 
0.6307]T in Eq. (3). Initial conditions of the 
state variables of the reactor in simulations were 
cPO(0) = 0.0291 kmol m–3, cPG(0) = 0.0533 kmol m–3 , 
T(0) = 349.1 K, TC(0) = 296.6 K.
The simulations were realized in the MATLAB-
Simulink environment by 3.2 GHz CPU and 
4 GB RAM. The problem of convex optimization 
was solved using YALMIP toolbox (Löfberg 2004) 
with solver SeDuMi (Pólik 2010). The control 
performance ensured by the designed robust 
constrained MPC approach was studied by simu-
lation of control of 9 linear models of the reac-
tor — nominal and vertex systems — in the form 
given by Eq. (1).
Obtained trajectories of controlled outputs are 
shown in Fig. 2. Fig. 2a) presents the control per-
formance of the temperature of reaction mixture 
T and Fig. 2b) displays the temperature of cooling 
medium TC of the nominal system (dashed) and all 
vertex systems (solid). The operating point repre-
sents the unstable steady-state and is denoted by 

Fig. 1. Steady-state analysis of CSTR with nominal 
values of uncertain parameters —

QGEN (solid), QOUT (dashed).
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the dotted line. As can be seen in Fig. 2, controlled 
outputs converge to the unstable steady-state values 
T2

S = 343.1 K, TC, 2
S = 290.6 K. Fig. 3 shows the con-

trol inputs, where Fig. 3a) presents the volumetric 
fl ow rate of reaction mixture q and Fig. 3b) shows 
the volumetric fl ow rate of the cooling medium qC 
in the nominal system (dashed) and all considered 
vertex systems (solid). It is proved in Fig. 3, the 
generated values of control inputs respect given 
symmetric constraints. The nominal value of the 
cost function given by Eq. (2) is JNOM = 10.6401. 
The maximal worst-case value of the cost function 
obtained for one of vertex systems is JWC = 14.1692. 
The values of cost functions were calculated for 
simulation time 100 min after which all variables 
were settled. Although the worst-case scenario 

evoked increasing of the cost function value about 
33 % in comparison with the nominal system, the 
robust constrained MPC stabilized the reactor with 
uncertain parameters in all investigated situations 
and kept control inputs within given constraints.

Conclusions

The paper presents an on-line concept of the robust 
constrained MPC of the CSTR. The algorithm is 
based on the LMI formulation that enables to solve 
the convex optimization problem in each control step 
in an effective way. Operating point of the CSTR was 
its unstable steady-state. Control performance of 
the CSTR assured using the robust MPC was tested 
via simulation of control of the nominal and eight 

 a) b)

Fig. 2. Control performance ensured by robust constrained MPC: a) temperature of reaction mixture,
b) temperature of cooling medium — nominal system (dashed), vertex systems (solid)

and reference (dotted).

 a) b)

Fig. 3. Control inputs generated by robust constrained MPC: a) fl ow rate of reaction mixture
b) fl ow rate of cooling medium — nominal system (dashed) and vertex systems (solid)
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vertex systems. The vertex systems were obtained 
for all combinations of boundary values of all con-
sidered interval parametric uncertainties. Obtained 
simulation results confi rm that the designed robust 
constrained MPC is capable to stabilize the CSTR 
with uncertainties into the unstable operating point 
taking into account the symmetric constraints on 
control inputs.
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