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Abstract: In the rational thermodynamics of most usual nonequilibrium “classical” fluid mixtures it has been 
proposed the “thermodynamic” partial pressure which generalize traditional definitions and merge together 
in an ideal gas mixture. In this paper, these thermodynamic partial pressures are calculated for a (real) gas 
mixture of methane-ethane-carbon dioxide and a liquid mixture of lithium hydroxide in water. The results 
are compared with those obtained using the classical formulations of partial pressures calculated in these 
mixtures as well.
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Introduction

In the classical thermodynamics of mixtures com-
posed of n constituents (components of mixture) 
 = 1, …, n partial pressures are rarely used. How-
ever when they are used, the following two classical 
formulations are typically applied to gas mixtures, 
even chemically reacting ones:
A.	(Partington 1949) p. 609: Partial pressure PaA of 

any gas a is the pressure this gas would exert if it 
alone occupied the total volume of the mixture 
at the same temperature.

B.	(Prausnitz et al. 1999) p. 584: Partial pressure PaB 

of constituent a in an n-constituent mixture is

	 PaB = xaP, a = 1, ..., n	 (1)

where x is the molar fraction of a in the considered 
mixture at the (total) pressure P.
While both of these definitions are used for mix-
tures of real gases, they generally do not give the 
same results. For example, in case A the sum of 
the partial pressures (ån

a=1Pa
A) need not be equal 

to the total pressure of the mixture P, i.e. Dalton’s 
law is generally invalid (see Tables and Figures 
below for examples). However in the case of ideal 
gas mixtures both definitions do give the same 
result, i.e. Dalton’s law is valid. For this reason the 
partial pressures are most often used in a mixture 
of (at least approximately) ideal gases (Samohýl 
and Voňka 2006). In principle, these definitions 
may also be used for liquid mixtures, but the ap-
plication of definition A is limited by either the low 
compressibility or nonexistence of constituents as 
pure liquids (cf. below).
Apart from classical thermodynamics, partial pres-
sures, or, more generally, partial stress tensors, have 

also been used in nonequilibrium thermodynamics 
(de Groot and Mazur 1962), (Truesdell and Toupin 
1960), particularly in the theory of rational ther-
modynamics (Truesdell 1984, 1968), (Müller 1968, 
1985). Using this theory, (Samohýl 1982, 1987, 
1975a, 1975b) already proposed a concept for partial 
pressures, termed thermodynamic partial pressure 
(see Eq. (5)). This can be applied to common fluid 
mixtures, the “classical” ones, by which we mean 
the most used fluid mixture with linear transport 
relations (newtonian with Fourier and Fick laws) pos-
sibly chemically reacting, with local equilibrium (i.e. 
usual thermodynamic relations are valid). In special 
cases (e.g. low pressure) this concept gives the same 
results as the formulations for classical partial pres-
sures. In the following Section we briefly describe 
this conception, together with the reasons for it, and 
in next Section we demonstrate the application of 
thermodynamic partial pressures to selected gas and 
liquid mixtures.

Partial Pressures in Rational Thermodynamics
In recent decades, continuum thermodynamics of 
mixtures has developed to also encompass irrevers-
ible processes (de Groot and Mazur 1962), (Truesdell 
1984). Continuum thermodynamics uses some 
partial properties (i.e. properties concerning mixture 
constituents; because of the use of momentum bal-
ances we prefer specific quantities rather than molar 
ones) that generally form fields, i.e. functions of 
position and time. Such fields include partial densities 
 (in chemistry termed mass concentrations — mass of 
constituent  = 1, …, n per unit volume of a mixture 
composed of n constituents). Partial densities enable 
us to define the density of a mixture  and to express its 
composition using the mass fraction w:
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Theories of this type can be applied to rational 
thermodynamics (Truesdell and Toupin 1960), 
(Truesdell 1984, 1968), (Müller 1968, 1985), (Samo-
hýl 1982, 1987), in which some partial properties can 
be used a priori as primitive concepts. Such proper-
ties include not only partial specific internal energies u 

and entropies s, but also partial stress tensors T, which 
were introduced (Truesdell and Toupin 1960) Sect. 
215 to describe the surface forces in the momentum 
balance of each constituent . Rational thermody-
namics describes the continuum thermomechanics 
of different constitutive (or material) models of 
pure solids, fluids, etc. and their mixtures (Truesdell 
1984), (Müller 1985), (Samohýl 1982). Primarily it 
is applied to mixtures of fluids (i.e. gases or liquids) 
because, under certain limited conditions, it encom-
passes the classical thermodynamics of mixtures 
(primarily equilibrium and uniform (homogeneous) 
theories). The classical thermodynamic structure 
(i.e. “local equilibrium”) is valid even when transport 
phenomena (e.g. viscosity, heat conduction, diffu-
sion) and chemical kinetics are in progress (Müller 
1968, 1985), (Samohýl 1982, 1987, 1975a, 1975b). In 
fluid mixtures partial stress tensors take the typical 
form, see, e.g. (Samohýl 1987) Eq. 27.1.

T = –P 1+ (nonequilibrium stress),  = 1, …, n	 (3)

where P is the partial pressure of a constituent  and 
1 is the unit tensor. To stress the difference from the 
classical definitions A and B above, we hereinafter 
denote P as thermodynamic partial pressures. The par-
tial nonequilibrium stresses in (3) primarily result 
from viscosity, but may additionally be influenced 
by chemical reactions, see (Samohýl 1987) Sect. 22, 
for details.
In the commonly used model of fluid mixtures 
with linear transport properties (e.g. Fou-
rier, Fick and Newtonian laws are valid), and 
even with nonlinear chemical kinetics (Samohýl 
1982, 1987, 1975a), thermodynamic partial 
pressures only depend on the (abso-lute) tem-
perature T and the densities rg, P = P^(T, r1, ..., rn) = 
= P^(T, rg), ,  = 1, …, n. (We use this shorter nota-
tion in the following, i.e. P depends on all partial 
densities ,  = 1, …, n. Similarly, e.g. in (6), the 
specific volume v depends not only on T and P, but 
also on all independent mass fractions w,  = l, …, 
n – 1. Note also that the use of an overhead symbol, 
e.g. P^

, n~, n^, means functions with corresponding 
values P , , , cf. Eqs. (6), (7).)

Moreover, the thermodynamic mixture pressure P de-
fined as

	 P P T P
n

= ≡
=

∑( , )ργ α
α 1

	 (4)

is the same as that appearing in the structure of clas-
sical thermodynamics (local equilibrium, implying 
e.g. Gibbs equations, is proved in this model). The 
structure of rational thermodynamics also permits 
the definition of the following (specific) quantities: 
partial free energies f = u – Ts, free energy of a 
mixture

f w f f Tn
= =

=∑ α αα γρ
1

( , )

and chemical potentials g fα αρ ρ= ∂ ∂ / . These 
quantities depend on temperature and densities 
(such as f P ,  above), see (Samohýl 1982, 1987, 
1975a, 1975b), (Samohýl and Šilhavý 1990) for de-
tails. In non-reacting mixtures the thermodynamic 
pressure P is equal to the actual (measured) pres-
sure, but need not be the same in chemical kinetics 
(cf. discussion of (3)). It can be also proved, see 
(Samohýl 1987) Eqs 22.39, 23.1, (Samohýl 1975) Eq. 
52, (Samohýl 1975b) Eq. 1, that g = f + P/. The 
classical counterpart of this expression provides 
the motivation for the following relation between 
thermodynamic partial pressures P and thermody-
namic mixture pressure P

	 P = P,  = 1, …, n	 (5)

which may be understood as the definition of the 
partial specific volume  of a constituent . Indeed, 
from (4), in accordance with the expected proper-
ties, we obtain the specific volume v of a mixture

v w v v T P w n
n

= = = = −
=

∑1 1 1
1

/ ( , , ), , ...,ρ βα α β
α

 	 (6)

By the inversion of (4) and with (2), the independ-
ent variables T, P, w may be used (Samohýl 1982, 
1987), (Samohýl and Šilhavý 1990) instead of T, , 
and therefore, for example, we can obtain

	 v T v T P w nα α γ α βν ρ α= = =

( , ) ( , , ), , ...,1 	 (7)

All of these relations are valid for the fields of 
this model, even when it is out of equilibrium 
but the partial quantities are not unique (except 
in the case of g and mixture properties, such 
as f, ), see (Samohýl 1982, 1987, 1975a, 1975b). 
However, using a basic property of all mixture 
balances (mass, momentum and their moment, 
energy and entropy inequality) called mixture (or 
form) invariance (Samohýl 1982, 1987, 1975b), 
(Samohýl and Šilhavý 1990), this non-uniquiness 
may be removed, and, for example, partial specific 
volumes may be calculated from specific mixture 
volume (6) as follows
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	 v v v w nnβ β β= + ∂ ∂ = − / , , ...,1 1 	 (9)

In a uniform (homogeneous) fluid mixture the 
formulas (8), (9) are equivalent to  expressed as 
derivatives of the extensive volume of the mixture 
according to the mass of each constituent  = 1, …, 
n  at a constant T, P, see, e.g. (Samohýl and Šilhavý 
1990) Eq. 8.41 or (Samohýl 1987) Eq. 23.62.
In fact, if we use molar quantities instead of specific 
ones, these formulas become, in effect, the classical 
ones. Namely, the counterparts of , , w are molar 
concentrations c, molar density c and molar fractions x 
as given by:

c M c c x c c x
n n

α α α α
α

α α
α

ρ= ≡ ≡ =
= =

∑ ∑/ , , / ,
1 1

1 	 (10)

where M is the molar mass of the corresponding 
constituent  = 1, …, n. The classical partial molar 
volumes V are given by (cf. Rem. 2)

V v M V T P x n nα α α α β α β= = = = −( , , ), , ..., ; , ...,1 1 1 	(11)

and the molar volume V of a mixture is given by

	 1
1

/ ( , , )c V x V V T P x Mv
n

= = = =
=

∑ α
α

α β 	 (12)

The (classical) independent variables T, P, x here 
follow from

	 w x M M M x M
n

α α α α α
α

= ≡
=

∑/ ,
1

	 (13)

where M is the average molar mass (depending on 
composition). Note also that (Samohýl 1987) Sect. 
23

	 ρ αα α α αv c V n= =, , ...,1 	 (14)

From the derivative of (12), we obtain the molar 
counterparts of (8), (9)

	 V V x V xn

n

= − ∂ ∂
=

−

∑ β
β

β( / )
1

1

	 (15)

	 V V V x nnβ β β= + ∂ ∂ = −/ , , ...,1 1 	 (16)

Again, in a uniform (homogeneous) mixture for-
mulas (15), (16) are equivalent to the classical ther-
modynamic definitions of partial molar volumes 
(i.e. to derivatives of extensive volume, with respect 
to the moles of each constituent at a constant T, P 
(Prausnitz et al. 1999).
For a mixture of ideal gases, it holds that (Samohýl 
and Voňka 2006).

	 ρ αα α α α αv c V x n= = =, , ...,1 	 (17)

and, therefore (in gases), it follows that, in the case 

of low pressure limit, all definitions of partial pres-
sures are the same, P P PA B

α α α= = .
From these formulas it can be seen that by knowing 
the state equations of a mixture in molar or mass 
units, i.e. V V T P x= ( , , )β or v v T P w= ( , , )β , we can 
calculate either the partial molar or specific vol-
umes (at a given pressure P and composition) using 
(15), (16) or (8), (9) respectively. The correspond-
ing thermodynamic partial pressures can then be 
calculated using (5) and (14). The necessary partial 
densities or concentrations follow from (2) or (10) 
respectively.

Partial Pressures in Gas and Liquid Mixtures
In this Section we demonstrate the calculation of 
thermodynamic partial pressures for selected gas 
and liquid systems, and compare them with the 
classical definitions A and B.
For the calculation of thermodynamic partial pres-
sures in gas mixtures we used a ternary mixture 
of methane, ethane and carbon dioxide at 320 K 
and at pressures up to 10 MPa. The state equation 
of this mixture, determined by (Hou et al. 1996), 
permits the calculation of thermodynamic partial 
pressures, as well as of the classical partial pressures 
of types A and B.
For the calculation of thermodynamic partial pres-
sures in liquid mixtures we used a water solution 
of lithium hydroxide, for which densities as a func-
tion of mass fractions were given by (Söhnel and 
Novotný 1983) at 20 °C and atmospheric pressure. 
We compared the calculated partial pressures with 
classical partial pressures of type B (as was already 
noted, model A cannot be applied in this case).
All results are presented in Tables 1-4 and Fig-
ures 1 and 2 below. For the ternary gas mixture 
CH4(1)-C2H6(2)-CO2(3), the state equation (Hou 
et al. 1996) takes the form of the following virial 
equation for pressure P as a function of molar 
volume V:

P T V B T V C T V P T V x= + + =R R R/ / / ( , , )2 3
β 	  (18)

where R is the gas constant, and B and C are the sec-
ond and third virial coefficients. These coefficients 
depend not only on temperature T (which is fixed 
and not stated in the following), but also on the 
molar fractions x = x1, x2 (x3 = 1 – x1 – x2) as follows 
(upper indices represent powers)

	
B B x B x B x B x x

B x x B x x
= + + + +

+ +
11 1

2
22 2

2
33 3

2
12 1 2

13 1 3 23 2 3

2
2 2

	 (19)

	

C C x C x C x C x x
C x x C x x

= + + + +

+ +
111 1

3
222 2

3
333 3

3
112 1

2
2

113 1
2

3 223 2
2

3

3 3 33 122 1 2
2

133 1 3
2

233 2 3
2

123 1 2 3

3

3 3 6

+ +

+ + +

C x x
C x x C x x C x x x

	 (20)
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This state equation can also describe pure substanc-
es (e.g. CH4(1) when x1 = 1 and x2 = x3 = 0, see (23) 
below) and binary mixtures (e.g. CH4(1)-CO2(3), 
see (25), (26), (27) below).
The values of the second and third virial coefficients 
B (cm3/mol) and C (cm6 mol–2) used for our mixture 
at 320 K are (Hou et al. 1996)

B B B
B B B

11 22 33

12 13

35 17 159 42 104 54
76 71 54 02

= − = − = −
= − = −

. , . , . ,

. , . , 223 105 65= − .
 	 (21)

	

C C C
C C C

111 222 333

112 113 122

2229 9692 4411
3594 2641 590

= = =
= = =

, , ,
, , 22

3195 6963 5075
4204

133 223 233

123

,
, , ,C C C

C
= = =
=

	 (22)

Firstly, using (18), we calculated the molar 
volume V for each given pressure P and com-
position (given by x1, x2). The state equation 
(18) implicitly contains V V T P x= ( , , )β , and 
therefore it holds that the derivatives are given by 
∂ ∂ = − ∂ ∂ ∂ ∂ =V x P x P V/ ( / ) /( / ), ,β β β 1 2 . Then, using 
(15), (16) for n = 3, we calculated partial molar 
volumes V( = 1, 2, 3) for each given (total) pres-
sure and composition. Next, (10), (12) were used to 
calculate c. Finally, using (5), (14), the thermody-
namic partial pressures P were calculated at total 
pressure P. The results are displayed in Table 1. For 
comparison purposes, we also calculated the classi-
cal partial pressures (see also Table 1):
To obtain classical partial pressures A, denoted PaA, 
we considered 1 mol of a mixture, i.e. the molar vol-

ume V at a given temperature (T = 320 K), pressure 
P and composition x1, x2 (molar fraction of CH4(1), 
C2H6 (2); for CO2(3) is x3 = 1 – x1 – x2). According 
to definition A, the classical partial pressure PaA of 
CH4(1) is equal to the pressure of pure CH4 given 
by (18) (where B = B11, C = C111 because here x1 = 1, 
x2 = x3 = 0), so that the molar volume equals V/x1. The 
same applies for other pure constituents. Therefore 
it holds:

	
P T V x B T V x

C T V x

A
α α αα α

ααα α α

= + +

+ =

R R

R

/( / ) /( / )

/( / ) , , ,

2

3 1 2 3
	 (23)

It also holds that classical partial pressures B, de-
noted PaB, can be obtained from (1)

	 P x PB
α α α= =, , ,1 2 3 	 (24)

Tables 1 and 2 present the thermodynamic partial 
pressures P and the classical partial pressures PaA, PaB 
calculated, as explained above, for ternary mixture 
CH4(1)-C2H6(2)-CO2(3) at temperature T = 320 K, 
composition x1 = 0.3, x2 = 0.3, x3 = 0.4 and two (total) 
pressures, P = 5 MPa and P = 10 MPa.
Because at low pressures state equation (18) con-
verges to an ideal gas mixture (cf. (17)), all partial 
pressures converge to ideal gas pressure B, e.g. 
calculation of the same system at P = 0.1 MPa gave 
relations P P P P P PA B A B

1 1 1 2 2 2 0 030= = = = = = . ,MPa
P P PA B

3 3 3= = = 0.040  MPa (with the precision of 
data shown in Tables 1 and 2).
In addition to a ternary gas mixture, we used a bi-
nary equimolar mixture of methane (1) and carbon 

Tab. 1.	 Pressure P = 5 MPa, temperature T = 320 K, molar volume V = 440.1 cm3/mol, compresibility 
factor PV/RT = 0.82702, virial coefficients B = –86.37 cm3/mol, C = 4510 cm6/mol2, pressures in 
MPa, sum = sum of pressures.

Constituents CH4 (1) C2H6 (2) CO2 (3) sum

molar fractions x  0.3000  0.3000  0.4000 ––––––

partial molar volumes V cm3/mol  522.3  374.1  428.0 ––––––

thermodynamic partial pressures P  1.780  1.274  1.946 5.000

A partial pressures  PaA  1.772  1.625  2.197 5.594

B partial pressures  PaB   1.500  1.500  2.000 5.000

Tab. 2.	 Pressure P = 10 MPa, temperature T = 320 K, molar volume V = 173.4 cm3/mol, compresibility 
factor PV/RT = 0.65195, virial coefficients B = –86.37 cm3/mol, C = 4510 cm6/mol2, pressures in 
MPa, sum = sum of pressures.

Constituents CH4 (1) C2H6 (2) CO2 (3) sum

molar fractions x 0.3000 0.3000 0.4000 –––––

partial molar volumes V cm3/mol  273.4 102.9  151.3 –––––

thermodynamic partial pressures P  4.734 1.780  3.486 10.000

A partial pressures PaA  4.352  3.466 4.800 12.419

B partial pressures  PaB   3.000  3.000 4.000 10.000
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dioxide (3) at a constant temperature of T = 320 K. 
In this case the state equation follows from (18), 
(19), (20) with x x x2 3 10 1≡ = −,  expressed as

P T V B T V C T V P T V x= + + =R R R/ / / ( , , )2 3
1 	 (25)

where now (with corresponding values (21), (22))

	 B B x B x B x x= + +11 1
2

33 3
2

13 1 32 	 (26)

	 C C x C x C x x C x x= + + +111 1
3

333 3
3

113 1
2

3 133 1 3
23 3 	 (27)

As for the ternary gas mixture, for each pres-
sure P and composition (given by x1; x3 = 1 – x1), 
we calculated the molar volume V V T P x= ( , , )1 , 
partial molar volumes V,  concentrations c, and, 
using (5), (14), the thermodynamic partial pres-
sures P( = 1, 3). The results at T = 320 K, (total) 
pressure P = 10 MPa, and composition x1= 0.5 are 
displayed in Table 3, which, again for comparison 
purposes, also includes classical partial pressures 
A and B calculated (for a = 1, 3) from (23) and (24) 
respectively.
The dependence of partial pressures on composi-
tion x1 in the binary system CH4(1)-CO2(3) at a 
temperature of T = 320  K and a (total) pressure 
of P  =  10  MPa is demonstrated in Fig. 1 (which 
describes the results for approximately 200 compo-
sitions).
Again, in the limit of low pressures we obtained the 
same partial pressures as for an ideal gas mixture 
(cf. (17)), e.g. calculation of the same system at 
P = 0.1  MPa gave P P P P P PA B A B

1 1 1 3 3 3= = = = = =  
= 0.050 MPa (with the precision of data shown in 
Table 3). In this limit also both triples of partial 

pressures in Fig. 1 converge to lines 7 and 8, thus 
describing ideal gas with partial pressures PaB.
(Zhang et al. 1992) determined the state equation for 
the binary mixture He(1)-N2(2) at 25 °C in the pres-
sure range of 200—1000 MPa. From this data, the 
thermodynamic partial pressures were calculated 
by similar way (Samohýl V. 2007). For example, for 
the equimolar mixture at 1000 MPa, P1 = 290 MPa 
(i.e. P2 = 710 MPa) while P1

B = 500 MPa (due to the 
limited validity of the state equation at low pressures, 
partial pressures A could not be calculated).
For the calculation of thermodynamic partial 
pressures in a liquid mixture we chose the binary 
system LiOH(1)-H2O(2) using the known densities 
(Söhnel and Novotný 1983) of this aqueous solution 
at 20  °C and atmospheric pressure (we used stan-
dard pressure, 101325 Pa) (Almost the same results 
were obtained by (Samohýl V. 2007) with a rougher 
estimate of the derivatives (37) using the data from 
(d’Ans-Lax 1967).). Such a system is interesting 
because it involves negative partial molar volumes 
in diluted solutions. In this case, using (5), (14), it is 
possible to obtain negative thermodynamic partial 
pressures for LiOH(1) (because the total pressure 
is positive this negativeness is compensated by the 
higher thermodynamic partial pressure of water(2), 
cf. (4)), see Table 4 and Fig. 2.
According to (Söhnel and Novotný 1983) the 
density  (in g/dm3) of a solution of LiOH(1) in 
water(2) at a constant temperature t (in °C) and 
pressure P  =  101325  Pa, depends on the molar 
concentration c1 (in mol/dm3) of LiOH(1) as fol-
lows (see (Söhnel and Novotný 1983), eqs 45, 20) 

Tab. 3.	 Pressure P = 10 MPa, temperature T = 320 K, molar volume V = 204.7 cm3/mol, compresibility 
factor PV/RT = 0.76947, virial coefficients B = –61.94 cm3/mol, C = 3018 cm6/mol2

, pressures in 
MPa, sum = sum of pressures.

Constituents  CH4 (1)  CO2 (3) sum

molar fractions x  0.5000  0.5000  –––––

partial molar volumes V cm3/mol  253.4  156.0  –––––

thermodynamic partial pressures P  6.186  3.814  10.000

A partial pressures PaA  6.026  5.010  11.036

B partial pressures PaB   5.000  5.000  10.000

Tab. 4.	 System LiOH(1)–H2O(2) at 20 °C and atmospheric pressure P = 101325 Pa. The dimensions cm3/g 
for specific volumes, g/cm3 for densities, and Pa for pressures are used. 

w1   – 1/∂ ∂v w 1 2 P1 P2 P1B P2B

0 0.9982 1.0018 1.2903 –0.2885 1.0018     0 101325     0 101325
0.01 1.0103 0.9898 1.1488 –0.1475 1.0013 –151 101476   764 100561
0.02 1.0218 0.9787 1.0884 – 0.0880 1.0004 –182 101507 1532   99793
0.04 1.0440 0.9578 0.9999 –0.0020 0.9978   –9 101334 3079   98246
0.06 1.0655 0.9386 0.9289   0.0654 0.9943   423 100901 4642   96683
0.08 1.0862 0.9206 0.8667   0.1232 0.9899 1085 100240 6221   95104
0.10 1.1063 0.9038 0.8101   0.1747 0.9849 1959   99366 7815   93510
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(In (Söhnel and Novotný 1983) the dimensions 
kg/m3 and kmol/m3 are used for densities and 
molar concentrations respectively. The numerical 
values calculated here and in (Söhnel and Novotný 
1983) are identical. Correspondingly, we use molar 
masses in g/mol.):

	 ρ ρ= + +0 1 1
3 2Gc Hc / 	 (28)

In the following relations, 0 is the density (in 
g/dm3) of pure water (2), and the coefficients G, H 
are dependent on temperature t:

	 ρ0
3 2999 65 2 0438 10 6 1744 100= + −. . / . //t t 	 (29)

	 G = A + Bt + Ct2, H = D + Et + Ft2	 (30)

For the LiOH-H2O system, the constants A, B, C, D, 
E, F have the following values (Söhnel and Novotný 
1983) p. 106:

	 A = 30.16, B = 0.04827, C = –6.976×10–4, 
	 D = –2.786, E = –0.04538, F = 5.916×10–4	 (31)

Therefore at temperature t = 20  °C, the following 
values are obtained for the density of pure water 
and the coefficients G, H:

	 r0 = 998,215 g/dm3	 (32)

	 G = 30.8464 g/mol, 
	 H = –3.45696 g (dm/mol)3/2	

(33)

Using (2), (10) we can express c1 = w1/M1, where 
M1 is the molar mass of LiOH(l). Inserting this into 
(28) we obtain the function f(, w1), which must be 
identical to zero:

	
f w H M w

G M w
( , ) ( / )
(( / ) )

/ / /ρ ρ
ρ ρ

1 1
3 2

1
3 2 3 2

1 1 01 0
≡ +

+ − + =
	 (34)

Using (32), (33) and M1 = 23.950 g/mol, we can 
calculate the dependence of  on mass fraction 
w1. From (6) we obtain the function v v T P w= ( , , ),1  
from which, using (8), (9), we calculate the partial 
specific volumes for n = 2 as follows:

	 v v w v w1 1 11= + − ∂ ∂( ) / 	 (35)

	 v v w v w2 1 1= − ∂ ∂ / 	 (36)

The required derivative follows from functions (34) 
and (6)

	

∂ ∂ = ∂ ∂ ∂ ∂

= +





−

v w f w f

H M w G
M

/ ( / )( / )( / )

( / )/ / /

1
2

1

1
3 2

1
1 2 1 2

1

1

3
2

ρ ρ

ρ
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

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







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3 2

1
3 2

1
1

1 2H M w G
M

wρ ρ

	 (37)

For the binary system LiOH(1)-H2O(2) at a tem-
perature of 20 °C and pressure P = 101325 Pa, equa-
tions (4) and (5) can be used to calculate the partial 
thermodynamic pressures P1 and P2

	 P1 = 11P	 (38)

	 P2 = 22P = P – P1	 (39)

The resulting values are displayed in Table 4. Re-
peating these calculations for approximately 200 
values of w1 (interval range 0—0.1) we obtained 
curves 1 and 2 (in Fig. 2) for the thermodynamic 
partial pressures of this mixture.
While, as explained in the Introduction, it is not 
possible to obtain classical partial pressures PaA 
of type A for liquid mixtures, classical partial 
pressures PaB can be obtained using for the sys-
tem LiOH(1)-H2O(2) (at 20 °C, 101325 Pa). The 
results are displayed in Table 4 and in Fig. 2. The 
dependence of PaB on w1 is nonlinear, namely

P Pw M M w M M P P PB B B
1 1 2 1 1 2 1 2 1= + − = −/( ( )), 	 (40)

where M1 is as above and M2 = 18.015 g/mol.

Conclusions

Thermodynamic partial pressures, proposed 
for common fluid models in rational ther
modynamics, were calculated for a (real) gas 
mixture of methane, ethane and carbon dioxide 
and for a liquid mixture of lithium hydroxide 
in water. The results for the gas mixture were 
compared with those obtained using the classical 
definitions. All definitions, the classical defini-
tions and the formulation we have proposed in 
this paper, share the known property that the 
values of the partial pressures merge to an ideal 
gas mixture under low pressure. In this paper we 
have also shown that thermodynamic partial pres-
sures may have negative values in a liquid mixture 
of lithium hydroxide in water.
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Fig. 1. The dependence of partial pressures (in MPa) on the molar fraction x1 of methane in the binary 
gas mixture CH4(1) – CO2(3) at a temperature of 320 K and total pressure P = 10 MPa. 

Bold solid lines: 1. thermodynamic partial pressure P1 of CH4(1); 2. thermodynamic partial 
pressure P3 of CO2(3); 3. thermodynamic pressure P of mixture : sum of both thermodynamic 

pressures P1 + P3 (same as line 9). Solid lines: 4. classical partial pressure P1A of CH4(1); 
5. classical partial pressure P3A of CO2(3); 6. sum of classical partial pressures P1A + P3A. 

Thin dashed lines: 7. classical partial pressure P1B of CH4(1); 8. classical partial pressure 
P3B of CO2(3); 9. sum of classical partial pressures P1B + P3B (the same as the line 3.).
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Fig. 2. The dependence of partial pressures (in Pa) on the mass fraction w1 of LiOH in the binary 
liquid mixture LiOH(1) – H2O(2) at a temperature of 20 °C and total (standard atmospheric) 

pressure P = 101325 Pa. Solid lines: 1. thermodynamic partial pressure P1 of LiOH(1); 2. thermodynamic 
partial pressure P2 of H2O(2); 5. the sum of partial pressures of both types equals 101325 Pa. 

Thin solid lines: 3. partial pressure P1B of LiOH(1); 4. partial pressure P2B of H2O(2).
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