Reactivity of calcium carbonate prepared from flue gas desulfurization gypsum

Open access

Abstract

Reactivity of various calcium carbonate samples for flue gas desulfurization was tested. Two groups of CaCO3 samples were considered; natural limestone containing calcite phase dominantly and samples prepared by the conversion of gypsum with ammonium and carbon dioxide (precipitated CaCO3) containing different amounts of calcite, aragonite and vaterite.

Reactivity of precipitated calcium carbonate depends primarily on the particle size, similarly as in case of industrial samples. The initial reaction rate was comparable with the industrial limestones for samples with the average particle size lower than 15 μm. However, the conversion of laboratory samples was significantly higher after 5 min of the reaction.

Phase composition of the precipitated calcium carbonate has a minor but noticeable impact on the reactivity. The presence of vaterite slightly increased the reactivity, which is in accordance with its lower compact structure in comparison with calcite and aragonite. Unexpected effect of the increased content of aragonite, which is the most compact phase in comparison with calcite and vaterite, was observed. If calcium carbonate contains up to approximately 30 % of aragonite the reactivity increases, which can be explained by the SEM pictures showing agglomerate composition with relatively high specific surface. At higher contents of aragonite, the reactivity decreases. All the obtained results proved the suitability of precipitated CaCO3 prepared from flue gas desulfurization gypsum to be recycled in the flue gas desulfurization process.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahlbeck J Engman T Fältén S Vihma M (1993) Chemical Engineering Science 48: 3479—3484.

  • Ahlbeck J Engman T Fältén S Vihma M (1995) Chemical Engineering Science 50: 1081—1089.

  • Benjamin MM (2002) Water Chemistry McGraw-Hill. ISBN-10: 1577666674.

  • BP Energy outlook 2018 Edition. https://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/energy-outlook/bp-energy-outlook-2018.pdf

  • Brown SR De Vault RF Williams PJ Babcock & Wilcox Power Generation Group Inc. http://www.powermag.com/techniques-for-determining-limestone-composition-and-reactivity/?sPrintmode=1 (2009 accessed 5. 5. 2018)

  • Chan PK Rochelle GT (1982) American Chemical Society Symposium Series 188: 75—97.

  • Claudio A Carletti G (2015) New Aspects in Limestone Dissolution for Wet Flue Gas Desulfurization PhD Thesis Åbo Finland.

  • CN101337684A Method for recovering sulfur and co-producing calcium carbonate from desulfurization gypsum.

  • Danielik V Fellner P Jurišová J Králik M (2018) Chemical Papers 72: 2631—2639.

  • De Blasio C Mäkilä E Westerlund T (2012) Applied Energy 90: 175—181.

  • Dou B Pan W Jin Q Wang W Li Y (2009) Energy Conversion and Management 50(10): 2547—2553.

  • Dragan S and Ozunu A (2012) Cent. Eur. J. Chem. 10(5): 1556—1564.

  • EU Reference Scenario 2016 Energy transport and GHG emissions Trends to 2050 (https://ec.europa.eu/energy/sites/ener/files/documents/ref2016_report_final-web.pdf).

  • Exxon Mobil 2018 Outlook for Energy: A View to 2040 (http://cdn.exxonmobil.com/~/media/global/files/outlook-for-energy/2018/2018-outlook-for-energy.pdf).

  • Fellner P Khandl V (1999) Characterization of Limestone Reactivity for Absorption of SO2 from Fume Gases. CHEMICAL PAPERS-SLOVAK ACADEMY OF SCIENCES 53: 238—241.

  • IEA. Energy and Air pollution World Energy Outlook 2016. Special report (2016) © OECD/IEA 2016 International Energy Agency 9 rue de la Fédération 75739 Paris Cedex 15 France. (https://www.iea.org/publication/freepublications/publication/WorldEnergyOutlookSpecialReport2016EnergyandAirPollution.pdf)

  • Jang HG Lee GJ Mo SY (2001) KR100303388.

  • Jang YN Ryu KW Lee MK (2014) US2014161692 (A1) — 2014-06-12.

  • Králik M Balko J Foltinovič T Štefancová R Kučera M Fellner P Danielik V Jurišová J (2017) 44th International Conference of SSCHE May 22—26 2017 Demänovská dolina Slovakia: 662.

  • Pepe F (2001) Industrial Engineering Chemistry Research 40: 5378—5385.

  • Plummer LN Busenberg E (1982) Geochimica et Cosmochimica Acta 46(6):1011—1040.

  • Olausson S Wallin M Bjerle I (1993) The Chemical Engineering Journal 51(2): 99—108.

  • Shih SM Lin JP Shiau GY (2000) Journal of Hazardous Materials B 79: 159—171.

  • Siagi ZO Mbarawa M (2009) Journal of Hazardous Materials 163: 678—682.

  • Stumpf Th Roeder A Hennicke HW (1984a) Das Reaktionsverfahren von Carbonatgesteinsmehlen in sauren insbesondere schwefligsauren Lösungen. Teil I. (in German). Zement-Kalk-Gips 37: 262.

  • Stumpf Th Roeder A Hennicke HW (1984b) Das Reaktionsverfahren von Carbonatgesteinsmehlen in sauren insbesondere schwefligsauren Lösungen. Teil II. (in German). Zement-Kalk-Gips 37: 454.

  • Toprac A Rochelle GT (1982) Environmental Progress 1: 52—58.

  • Ukawa N Takashina T Shinoda N Shimizu T (1993) Environmental Progress 12: 238—242.

  • Wallin M Bjerle I (1989) Chemical Engineering Science 44: 61—67.

  • Wirsching F (2000) Calcium Sulfate. In: Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. doi: 10.1002/14356007.a04_555

  • Ye Z and Bjerle I (1994) Powder Technology 79: 273—277.

  • Zhong Y Gao X Wang H Luo ZY Ni MJ Cen KF (2008) Fuel Processing Technology 89(11): 1025—1032.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 46 46 12
PDF Downloads 43 43 7