Quantitative analysis and resolution of pharmaceuticals in the environment using multivariate curve resolution-alternating least squares (MCR-ALS)

Open access

Abstract

The study presents the application of multivariate curve resolution alternating least squares (MCR-ALS) with a correlation constraint for simultaneous resolution and quantification of ketoprofen, naproxen, paracetamol and caffeine as target analytes and triclosan as an interfering component in different water samples using UV-Vis spectrophotometric data. A multivariate regression model using the partial least squares regression (PLSR) algorithm was developed and calculated. The MCR-ALS results were compared with the PLSR obtained results. Both models were validated on external sample sets and were applied to the analysis of real water samples. Both models showed comparable and satisfactory results with the relative error of prediction of real water samples in the range of 1.70–9.75 % and 1.64–9.43 % for MCR-ALS and PLSR, resp. The obtained results show the potential of MCR-ALS with correlation constraint to be applied for the determination of different pharmaceuticals in complex environmental matrices.

1. S. D. Richardson and T. A. Ternes, Water analysis: emerging contaminants and current issues, Anal. Chem. 83 (2011) 4614–4648; https://doi.org/10.1021/ac200915r

2. K. Kümmerer, Pharmaceuticals in the Environment: Sources, Fate, Effects and Risks, Springer Science & Business Media, Heidelberg 2008, pp. 521.

3. D. S. Aga, Fate of Pharmaceuticals in the Environment and in Water Treatment Systems, CRC Press, Boca Raton (FL) 2007.

4. J. Rivera-Utrilla, M. Sánchez-Polo, M. Á. Ferro-García, G. Prados-Joya and R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere, 93 (2013) 1268–1287; https://doi.org/10.1016/j.chemosphere.2013.07.059

5. T. A. Ternes, Occurrence of drugs in German sewage treatment plants and rivers 1, Water Res. 32 (1998) 3245–3260; https://doi.org/10.1016/S0043-1354(98)00099-2

6. M. D. Celiz, J. Tso and D. S. Aga, Pharmaceutical metabolites in the environment: analytical challenges and ecological risks, Environ. Toxicol. Chem. 28 (2009) 2473–2484; https://doi.org/10.1897/09-173.1

7. H. Shaaban, High speed hydrophilic interaction liquid chromatographic method for simultaneous determination of selected pharmaceuticals in wastewater using a cyano-bonded silica column, J. Liq. Chromatogr. Relat. Technol. 41 (2018) 180–187; https://doi.org/10.1080/10826076.2018.1429282

8. E. Gracia-Lor, N. I. Rousis, E. Zuccato, R. Bade, J. A. Baz-Lomba, E. Castrignanò, A. Causanilles, F. Hernández, B. Kasprzyk-Hordern and J. Kinyua, Estimation of caffeine intake from analysis of caffeine metabolites in wastewater, Sci. Total Environ. 609 (2017) 1582–1588; https://doi.org/10.1016/j.scitotenv.2017.07.258

9. F. Tohidi and Z. Cai, Fate and mass balance of triclosan and its degradation products: comparison of three different types of wastewater treatments and aerobic/anaerobic sludge digestion, J. Hazard. Mater. 323 (2017) 329–340; https://doi.org/10.1016/j.jhazmat.2016.04.034

10. H. Shaaban and T. Górecki, High temperature-high efficiency liquid chromatography using sub-2 µm coupled columns for the analysis of selected non-steroidal anti-inflammatory drugs and veterinary antibiotics in environmental samples, Anal. Chim. Acta 702 (2011) 136–143; https://doi.org/10.1016/j.aca.2011.06.040

11. K. Kotnik, T. Kosjek, U. Krajnc and E. Heath, Trace analysis of benzophenone-derived compounds in surface waters and sediments using solid-phase extraction and microwave-assisted extraction followed by gas chromatography-mass spectrometry, Anal. Bioanal. Chem. 406 (2014) 3179–3190; https://doi.org/10.1007/s00216-014-7749-0

12. A. El-Gindy, S. Emara and A. Mostafa, UV partial least-squares calibration and liquid chromatographic methods for direct quantitation of levofloxacin in urine, J. AOAC Int. 90 (2007) 1258–1265; https://doi.org/10.1039/c0ay00662a

13. R. Tauler, Multivariate curve resolution applied to second order data, Chemom. Intel. Lab. Syst. 30 (1995) 133–146; https://doi.org/10.1016/0169-7439(95)00047-X

14. W. Chen, X.-Y. Liu, B.-C. Huang, L.-F. Wang, H.-Q. Yu and B. Mizaikoff, Probing membrane fouling via infrared attenuated total reflection mapping coupled with multivariate curve resolution, Chemphyschem 17 (2016) 358–363; https://doi.org/10.1002/cphc.201500932

15. M. Navarro-Reig, J. Jaumot, A. Baglai, G. Vivó-Truyols, P. J. Schoenmakers and R. Tauler, Untargeted comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry analysis of rice metabolome using multivariate curve resolution, Anal. Chem. 89 (2017) 7675–7683; https://doi.org/10.1021/acs.analchem.7b01648

16. D. A. Forchetti and R. J. Poppi, Use of NIR hyperspectral imaging and multivariate curve resolution (MCR) for detection and quantification of adulterants in milk powder, LWT-Food Sci. Technol. 76 (2017) 337–343; https://doi.org/10.1016/j.lwt.2016.06.046

17. F. Puig-Castellví, I. Alfonso and R. Tauler, Untargeted assignment and automatic integration of 1H NMR metabolomic datasets using a multivariate curve resolution approach, Anal. Chim. Acta 964 (2017) 55–66; https://doi.org/10.1016/j.aca.2017.02.010

18. J. B. Ghasemi, M. K. Rofouei and N. Amiri, Multivariate curve resolution alternating least squares in the quantitative determination of sulfur using overlapped S (Kα)–Mo (Lα) emission peaks by wavelength dispersive X-ray fluorescence spectrometry, X-Ray Spectrom. 44 (2015) 75–80; https://doi.org/10.1021/acs.analchem.6b03116

19. H. Parastar and H. Shaye, Comparative study of partial least squares and multivariate curve resolution for simultaneous spectrophotometric determination of pharmaceuticals in environmental samples, RSC Adv. 5 (2015) 70017–70024; https://doi.org/10.1039/C5RA10658C

20. R. L. Pérez and G. M. Escandar, Liquid chromatography with diode array detection and multivariate curve resolution for the selective and sensitive quantification of estrogens in natural waters, Anal. Chim. Acta 835 (2014) 19–28; https://doi.org/10.1016/j.aca.2014.05.015

21. C. Ruckebusch and L. Blanchet, Multivariate curve resolution: a review of advanced and tailored applications and challenges, Anal. Chim. Acta 765 (2013) 28–36; https://doi.org/10.1016/j.aca.2012.12.028

22. M. Garrido, F. Rius and M. Larrechi, Multivariate curve resolution-alternating least squares (MCR-ALS) applied to spectroscopic data from monitoring chemical reactions processes, Anal. Bioanal. Chem. 390 (2008) 2059–2066; https://doi.org/10.1007/s00216-008-1955-6

23. J. Santos, I. Aparicio, E. Alonso and M. Callejón, Simultaneous determination of pharmaceutically active compounds in wastewater samples by solid phase extraction and high-performance liquid chromatography with diode array and fluorescence detectors, Anal. Chim. Acta 550 (2005) 116–122; https://doi.org/10.1016/j.aca.2005.06.064

24. J. Jaumot, A. de Juan and R. Tauler, MCR-ALS GUI 2.0: New features and applications, Chemom. Intel. Lab. Syst. 140 (2015) 1–12; https://doi.org/10.1016/j.chemolab.2014.10.003

25. Multivariate Curve Resolution Homepage; http://www.mcrals.info; last access date Sept 4, 2018

26. USP 29, NF 24, USP Convention, Rockville (MD) USA, 2005; http://www.pharmacopeia.cn/usp.asp; last access date Sept 4, 2018

27. R. G. Brereton, Multilevel multifactor designs for multivariate calibration, Analyst 122 (1997) 1521–1529; https://doi.org/10.1039/a703654j

28. T. Azzouz and R. Tauler, Application of multivariate curve resolution alternating least squares (MCR-ALS) to the quantitative analysis of pharmaceutical and agricultural samples, Talanta 74 (2008) 1201–1210; https://doi.org/10.1016/j.talanta.2007.08.024

29. A. R. de Carvalho, M. del Nogal Sánchez, J. Wattoom and R. G. Brereton, Comparison of PLS and kinetic models for a second-order reaction as monitored using ultraviolet visible and mid-infrared spectroscopy, Talanta 68 (2006) 1190–1200; https://doi.org/10.1016/j.talanta.2005.07.053

30. W. Windig and J. Guilment, Interactive self-modeling mixture analysis, Anal. Chem. 63 (1991) 1425–1432; https://doi.org/10.1021/ac00014a016

31. R. Bro and S. De Jong, A fast non-negativity-constrained least squares algorithm, J. Chemom. 11 (1997) 393–401; https://doi.org/10.1002/(SICI)1099-128X(199709/10)11:53.0.CO;2-L

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information


IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 161 161 97
PDF Downloads 65 65 30