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Quantitative analysis and resolution of pharmaceuticals in 
the environment using multivariate curve resolution-alternating 

least squares (MCR-ALS)

The study presents the application of multivariate curve 
resolution alternating least squares (MCR-ALS) with a cor-
relation constraint for simultaneous resolution and quanti-
fication of ketoprofen, naproxen, paracetamol and caffeine 
as target analytes and triclosan as an interfering compo-
nent in different water samples using UV-Vis spectrophoto-
metric data. A multivariate regression model using the 
partial least squares regression (PLSR) algorithm was de-
veloped and calculated. The MCR-ALS results were com-
pared with the PLSR obtained results. Both models were 
validated on external sample sets and were applied to the 
analysis of real water samples. Both models showed com-
parable and satisfactory results with the relative error of 
prediction of real water samples in the range of 1.70–9.75 % 
and 1.64–9.43 % for MCR-ALS and PLSR, resp. The obtained 
results show the potential of MCR-ALS with correlation 
constraint to be applied for the determination of different 
pharmaceuticals in complex environmental matrices.

Keywords: multivariate curve resolution alternating least 
squares, correlation constraint, partial least squares, multi-
variate calibration, environmental analysis, UV-Vis spec-
trophotometry

Different classes of pharmaceuticals and personal care products are becoming a 
source of environmental contamination. They have been reported to occur in different 
water systems such as surface water, groundwater and wastewater (1–3). Non-steroidal 
anti-inflammatory drugs (NSAIDs) such as naproxen, ketoprofen, ibuprofen and 
paracetamol, antidepressants, antibiotics and antiepileptics are examples of some of the 
pharmaceuticals that are commonly detected in water environments (4–6). Caffeine is also 
detected in different environmental compartments, because a significant amount of caf-
feine could be disposed of household wastes from unconsumed caffeine-containing bever-
ages or could leave the human body unchanged via urine or feces (7). In addition, caffeine 
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is commonly used in combination with analgesics and dietary supplements (8). Triclosan 
is a broad-spectrum antimicrobial agent that is widely used in different personal care 
products and has been detected in wastewater (9). Continual discharge of pharmaceuticals 
into the environment might lead to adverse effects on humans and wildlife. For instance, 
accumulation of NSAIDs such as diclofenac in water may cause harmful renal effects in 
humans (10). There is, therefore, a great demand to monitor these emerging contaminants 
in such complex environmental matrices.

Liquid chromatography (LC) (10) and gas chromatography (GC) (11) are the most com-
monly employed analytical techniques for the analysis of pharmaceuticals in environmen-
tal samples. Despite the high sensitivity and selectivity of the chromatographic techniques 
used, they require tedious and time-consuming procedures of sample preparation. More-
over, these techniques require expensive solvents and sophisticated instruments. 

UV-Vis spectrophotometry is a simple and cost-effective technique. However, the 
critical challenge of this technique is the occurrence of overlapped spectra and matrix in-
terferences (12). In such situations, multivariate calibration models could be effectively 
used since they provide results from mathematical resolution of the overlapped spectra 
that are comparable to those obtained by chromatographic techniques.

Multivariate curve resolution (MCR) is one of the most commonly used multivariate 
calibration models. Multivariate curve resolution-alternating least squares (MCR-ALS) is 
a mathematical algorithm proposed by Tauler in 1995 (13). It decomposes the data matrix 
into a bilinear model producing pure spectral and concentration profiles of the mixture 
components. The algorithm has been successfully used to analyze data coming from dif-
ferent sources such as IR (14), chromatography (15), hyperspectral imaging (16), nuclear 
magnetic resonance (17) and X-ray fluorescence (18). Parastar and Shaye (19) applied the 
algorithm to spectrophotometric determination of some pharmaceuticals in different wa-
ter samples. Estrogens in natural water were determined using the same algorithm ap-
plied to LC with diode array detection (20). For more MCR-ALS applications, readers are 
referred to refs. 21 and 22.

In this work, MCR-ALS with correlation constraint has been applied to overcome the 
complex matrix effect and to quantitatively determine selected pharmaceuticals in differ-
ent aqueous media using first-order UV spectrophotometric data. In addition, a partial 
least squares regression (PLSR) method was also developed and optimized. Optimized 
methods were statistically compared to a reported HPLC method (23). To the best of our 
knowledge, this is the first study to use MCR-ALS for simultaneous determination of ke-
toprofen (KTP), naproxen (NPX), paracetamol (PAR) and caffeine (CAF) in the presence of 
triclosan (TRC) as interfering species in different environmental water samples.

EXPERIMENTAL

Chemicals and reagents

Pure standards of KTP, NPX, PAR, CAF and TRC were purchased from Sigma-Aldrich 
(now Merck KGaA, Germany) and certified to contain ≥ 98, 99, 99, 99 and 99 % API, resp., 
as per official methods (26). Hydrochloric acid and methanol were obtained from Merck 
(Germany). Ultra-pure water (18.2 MΩ) was purified using a Pure Lab Ultra water system 
(ELGA, High Wycombe, UK) and used for all sample preparations.
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Instrumentation and software

A Hach UV-Visible spectrophotometer, model DR6000 (Hach, USA) with 1-cm quartz 
cell was used for spectrophotometric measurements. The wavelength range was 200–400 
nm, bandwidth was 1 nm and the wavelength scanning speed was 2800 nm min–1. Spectra 
were exported as Excel files. Microsoft Excel 2010 was used for plotting the acquired spec-
tra. PLS Toolbox software version 8.5 (R8.5.2) (Eigenvector Research, Inc., Manson, WA, 
USA) was used for PLSR analysis. MCR-ALS calculations were performed using MCR-ALS 
GUI 2.0 software for use with Matlab 2015a (24), freely available (25).

Standard solutions and real samples

Stock solutions of the four analytes and TRC were prepared separately in methanol, 
at a concentration of 100 µg mL–1 and stored in dark at 4 °C. Working standard solutions 
were freshly prepared by appropriate dilution in 0.05 mol L–1 HCl. A set of 25 calibration 
solutions of the four analytes and TRC was prepared in the concentration range of 1.0–11.0 
µg mL–1. A validation set of additional 7 samples containing the four analytes and TRC 
was similarly prepared. 

Sea and well waters were collected from Al Khobar city, Saudi Arabia. Wastewater 
samples were collected from the Dammam wastewater treatment plant (Dammam, Saudi 
Arabia). All samples were collected in amber glass bottles with TeflonTM lined caps and 
then transferred to the laboratory in ice boxes. Water samples were filtered through 0.45-
μm Nylon Acrodisc membrane filters (Gelman Sciences Inc., USA). No further treatment 
was applied to any sample. The samples were spiked with standard solutions of KTP, NPX, 
PAR, CAF and TRC in the concentration range of 1.0–11.0 µg mL–1. A test set of 20 samples 
was prepared. All samples were prepared in duplicate. All samples were prepared in 0.05 
mol L–1 HCl with no pH adjustment.

A multilevel multifactor design (27) was used to build the calibration model. A five-
factor, five-level design was used in the concentration range of 1.0–11.0 µg mL–1 for the four 
analytes and TRC. The selected design provided factors that are mutually orthogonal and 
span each other’s calibration space symmetrically. Concentrations of the validation set 
were selected randomly within the calibration range and the test set was fixed at concen-
tration levels of 4.0, 5.0, 6.0, 8.0 and 9.0 µg mL–1 for each analyte. Table I shows the calibra-
tion matrix along with the validation and test sets.

Chemometric methods

Multivariate curve resolution alternating least squares (MCR-ALS). – MCR extracts relevant 
information of pure components in a mixture through bilinear model decomposition of 
the data matrix. This model can be expressed in Eq. 1:

	 D = CST + E	 (1)

where D is the experimental data matrix containing the measured spectra. Columns of 
matrix C contain the concentration profiles of all analytes and ST is the matrix of the cor-
responding pure spectra. E is the matrix associated to experimental error and represents 
the data that is not explained by the model (residuals).
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Information about estimation of the possible number of components, non-negativity 
and correlation constraints have been described elsewhere (24, 28).

Quality of the MCR-ALS model can be assessed using the percentage of lack of fit (Eq. 
2):

	 ( )
2

2
100lack of fit %

iji , j

iji , j

e

d
=

å
å

	 (2)

where dij is an element of the data matrix D and eij is the related residual (difference be-
tween experimental data input and model reproduced data).

Partial least-squares regression (PLSR). – PLSR decomposes the spectral data matrix D 
and concentration vector c simultaneously into scores T and loadings P and q according to 
Eqs. 3 and 4:

	 D = TPT + E	 (3)

	 c = Tq + f	 (4)

where T is the score matrix, PT and q are the matrix and vector loadings describing the 
variance in D and c, resp. E and f are the experimental errors (residuals) in D and c. This 
decomposition looks for a set of components called factors or latent vectors in such a way 
that the first few factors explain as much as possible of the covariance between D and c. 
This is then followed by a regression step where the decomposition of D is used to predict 
c (29). In this work, data was mean-centered before decomposition.

Validation of models

In order to evaluate the quality of prediction of the developed MCR-ALS and PLSR 
models, a set of external validation samples were used. From the results of these samples, 
some figures of merit were calculated according to the following equations to describe the 
validation results.

Root mean square error of prediction (RMSEP):
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n
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=
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relative percentage error in the concentration predictions (RE, %):
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where ci and ĉi are the known and predicted analyte concentration in sample i, resp., and 
n is the total number of samples used in the validation set.

In addition, the slope, intercept and correlation coefficient were calculated for a linear 
regression fit found between the known and predicted concentrations.

RESULTS AND DISCUSSION

Multivariate calibration results

Fig. 1 shows the pure UV absorption speca of the four analytes KTP, NPX, PAR, CAF 
along with the interfering component TRC at a concentration of 10 µg mL–1. As can be 
observed, the spectra are highly overlapped. In addition, the TRC spectrum shows a strong 
overlap with target analytes along the wavelength range of 200–340 nm. As a result, quan-
titative resolution of target analytes is impossible using any univariate or conventional 
method. Therefore, MCR-ALS and PLSR were proposed to resolve these complex mixtures 
with the interfering component. NPX shows very strong absorption in the range preceding 
240 nm, which led to noisy spectra of the asured calibration mixtures in this range. There-
fore, wavelengths of 200–240 nm were excluded. Moreover, wavelengths of 340–400 nm 

Fig. 1. Pure UV-Vis spectra of 10.0 µg mL–1 of ketoprofen (KTP), naproxen (NPX), paracetamol (PAR), 
caffeine (CAF) and triclosan (TRC).
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Fig. 2. Plot of actual analyte concentrations vs. MCR-ALS and PLS predicted values.
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were excluded as well due to poor absorption of the target analytes at the concentration 
levels measured. The wavelength range of 240–340 was therefore selected for quantitative 
determination of the target analytes using MCR-ALS and PLSR models.  

Five major components were initially determined in the data matrix before starting 
the MCR-ALS using singular value decomposition (SVD). Pure spectra of target analytes 
were used as initial estimates to check the MCR-ALS resolution and to decrease the rota-
tional ambiguity effects. Initial spectral profile estimates were calculated using the sim-
ple–to-use interactive self-modeling mixture analysis (SIMPLISMA) (30). MCR-ALS was 
applied to the 25-mixture calibration data set using non-negativity constraints in spectral 
and concentration profiles. A fast non-negativity constrained least squares algorithm 
(FNNLS, fast NNLS) (31) was used. In addition, correlation constraint was applied (24), and 
the variable containing quantitative information of target analytes was selected (i.e., con-
centration profile of the four target analytes in the data matrix). The convergence criterion 
was set at 0.1 % and the maximum number of iterations was 100. However, no more than 
10 iterations were required to achieve convergence in all the tested samples. The regression 
model was developed.

Fig. 2 shows the scatter plot of resolved MCR-ALS concentration values vs. the actual 
concentrations. MCR-ALS recovered spectral profiles of the four target analytes and the 
interference component as well (Fig. 3). Correlation coefficients higher than 0.998 were 
achieved for all components. Table II presents the figures of merit of the regression model 
of the calibration set. The results show excellent correlation coefficients (R > 0.998) and low 
relative error RE = 3.15, 2.28, 2.52 and 2.30 % for KTP, NPX, PAR and CAF, resp. NPX 
showed the best statistical results of the calibration set. This was mainly due to the UV 
absorption band in the wavelength range of 310–340 nm, with almost no interference from 
either the interfering component (TRC) or the other three analytes (Fig. 1).

Fig. 3. MCR-ALS resolved spectral profiles of the four target analytes (KTP, NPX, PAR and CAF) and 
the interfering component (TRC).
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The same calibration data matrix used for MCR-ALS analysis was also used to develop 
the PLSR model for comparison. The data was divided into two input matrices: one as the 
calibration matrix and the other as the test matrix as required by the software. Different 
preprocessing methods such as auto-scaling and mean-centering were tested. Mean-center-
ing was selected due to its higher sensitivity and good results. The LOO-CV was used to 
determine the number of PLSR latent factors based on the root mean square error of cross 
validation (RMSECV). The optimum number of latent factors was selected. The selected 
model was the one with the smallest number of factors with RMSECV, which was not sig-
nificantly greater than that for the model that yielded the lowest RMSECV. The model 
showed five factors. In contrast to MCR-ALS, PLSR is not able to provide an estimation of 
pure spectra of the analytes in the mixture. Table II shows the figures of merit of the PLSR 
calibration model compared to the MCR-ALS model. The results show that both models are 
comparable. PLSR showed excellent correlation coefficients between 0.9981 and 0.9991 and 
low relative errors between 2.13 and 3.13 %. In summary, MCR-ALS and PLSR models 
showed comparable and satisfactory calibration results where there was no matrix effect. 
However, it is important to test the prediction ability of the developed models on external 
data sets (i.e., validation and test sets). Therefore, the models were applied for the prediction 
of validation and test sets with different concentrations within the calibration range.

Validation set results

The developed models were applied for prediction of the concentrations of KTP, NPX, 
PAR and CAF in an external validation set of 7 synthetic mixtures with different concen-
trations (Table I). The MCR-ALS algorithm was performed using the same constraints 
applied for the calibration set. Table III shows the figures of merit for predictions of the 
validation set in terms of percent recovery, RMSEP, SEP, RE (%), bias and R. Percent recov-
eries are satisfactory, ranging from 98.1 ± 2.6 to 100.8 ± 2.2 %. The model showed excellent 
correlation coefficients, R, between 0.9985 and 0.9998 and low relative errors RE between 
1.75 and 2.68 %. Fig. 2 shows the regression plots of the MCR-ALS predicted analyte con-
centrations versus actual concentrations.

The validation set was mean-centered and the PLSR model was applied to it using 5 
latent factors. Regression plots of the predicted versus actual concentrations showed high 
correlation coefficients between 0.9983 and 0.9998 (Fig. 2 and Table III). Table III shows the 
obtained figures of merit of external validation of the MCR-ALS model compared to the 
PLSR model. Both models showed comparable and satisfactory results.

Real samples

To test the ability of the developed models to quantify target analytes in real samples 
and overcome the interference from background constituents, four different water samples 
(sea, tap, waste and well water) were spiked with target analytes and analyzed using the 
developed models. Table I shows the test samples spiked with appropriate amounts of 
analytes, in duplicate, at five different concentrations (4.0, 5.0, 6.0, 8.0 and 9.0 µg mL–1).

The same MCR-ALS constraints and PLSR pre-processing of calibration and valida-
tion sets were applied to the set of real samples. Table IV shows the statistical figures of 
merit of the real sample set of both models. The MCR-ALS results obtained revealed slight-
ly higher relative errors RE (%) than those obtained for the synthetic mixtures. This was 
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mainly due to the presence of the interfering matrix in real samples. Waste water samples 
showed the highest relative errors between 2.25–9.75 %. Nevertheless, NPX relative error 
was not that high with RE of 2.25 %, which was due to its characteristic absorption band 
in the wavelength range of 310–340 nm. Very similar results were obtained by the applica-
tion of the PLSR model, as shown in Table IV. Results of MCR-ALS and PLSR models were 
compared with the reported HPLC method (23) based on Student’s t-test and F-ratio at 95 
% confidence level and showed no significant difference regarding accuracy and precision 
(Table V). 

To sum up, MCR-ALS showed prediction ability comparable to the well-established 
PLSR. However, MCR-ALS has the advantage of recovering pure spectra of the analytes of 
interest as well as the interfering components (Fig. 3), thus allowing their possible identi-
fication and/or confirmation.

Method validation

The proposed methods were further validated in terms of linearity and range, as 
shown in Table II. Selectivity, accuracy, precision and repeatability of the proposed meth-
ods were assessed by the analysis of the external validation set, as shown in Table III. 
Satisfactory validation results were obtained for both models and showed that the models 
were accurate, precise, robust and specific over the specified range. Moreover, variation of 
hydrochloric acid strength by ±0.02 mol L–1 and temperature by ±2 °C had no significant 
effects on the developed models.

CONCLUSIONS

MCR-ALS with the correlation constraint has been proven as an effective and accurate 
tool for the spectrophotometric determination of different pharmaceuticals in natural wa-
ter samples when the sample matrix effect exists and in the presence of other interfering 
components. The predictive capability of MCR-ALS was comparable to that of the PLSR 
model. However, MCR-ALS has the advantage of recovering qualitative information about 
the analytes of interest and interfering species.
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