Therapeutic bullfrog oil-based nanoemulsion for oral application: Development, characterization and stability

Open access

Abstract

The aim of this study was to develop, optimize, and characterize a stable therapeutic bullfrog oil based nanoemulsion for oral application using a rational experimental design approach. The optimized oral nanoemulsion contained 0.2 % sodium benzoate and 0.02 % propyl-paraben as preservatives; 0.1 % sucralose and 0.4 % acesulfam K as sweeteners and 0.1 % tutti-frutti as flavoring to mask the unpleasant organoleptic characteristics of bullfrog oil. The oral O/W-nanoemulsion showed the droplet size, PDI, zeta potential, and pH of 410 ± 8 nm, 0.20 ± 0.02, –38 ± 2.5 mV, and 6.43 ± 0.05, respectively. The optimized oral nanoemulsion showed a milky single-phase and optimal physical stability at 25 °C for 90 days. Indeed, higher oxidation induction time and lower formation of peroxides in the oral nanoemulsion were responsible for improving its stability. A therapeutic delivery system containing bullfrog oil for oral application was successfully developed and optimized with ideal thermo-oxidative stability.

1. J. L. Burguera and M. Burguera, Analytical applications of emulsions and microemulsions, Talanta 96 (2012) 11–20; https://doi.org/10.1016/j.talanta.2012.01.030

2. A. H. Saberi, Y. Fang and D. J. McClements, Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification, J. Colloid Interface Sci. 391 (2013) 95–102; https://doi.org/10.1016/j.jcis.2012.08.069

3. D. T. Piorkowski and D. J. McClements, Beverage emulsions: Recent developments in formulation, production, and applications, Food Hydrocoll. 42 (2014) 5–41; https://doi.org/10.1016/j.food-hyd.2013.07.009

4. D. J. McClements and Y. Li, Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components, Adv. Colloid Interface Sci. 159 (2010) 213–228; https://doi.org/10.1016/j.cis.2010.06.010

5. P. Karthik and C. Anandharamakrishnan, Enhancing omega-3 fatty acids nanoemulsion stability and in-vitro digestibility through emulsifiers, J. Food Eng. 187 (2016) 92–105; https://doi.org/10.1016/j.jfoodeng.2016.05.003

6. I. A. Nehdi, Characteristics and composition of Washingtonia filifera (Linden ex André) H. Wendl. seed and seed oil, Food Chem. 126 (2011) 197–202; https://doi.org/10.1016/j.food-chem.2010.10.099

7. R. Rutckeviski, F. H. Xavier-Jr, A. R. V. Morais, E. N. Alencar, L. A. Machado, J. Genre, A. Gondim and E. S. T. Egito, Thermo-oxidative stability evaluation of Bullfrog (Rana catesbeiana Shaw) oil, Molecules 22 (2017) 606; https://doi.org/10.3390/molecules22040606

8. J. R. Nelson, O. Wani, H. T. May and M. Budoff, Potential benefits of eicosapentaenoic acid on atherosclerotic plaques, Vascul. Pharmacol. 91 (2017) 1–9; https://doi.org/10.1016/j.vph.2017.02.004

9. D. S. Kelley, Modulation of human immune and inflammatory responses by dietary fatty acids, Nutrition 17 (2001) 669–673; https://doi.org/10.1016/S0899-9007(01)00576-7

10. E. Kurtys, U. L. M. Eisel, J. M. Verkuyl, L. M. Broersen, R. A. J. O. Dierckx and E. F. J. Vries, The combination of vitamins and omega-3 fatty acids has an enhanced anti-inflammatory effect on microglia, Neurochem. Int. 99 (2016) 206–214; https://doi.org/10.1016/j.neuint.2016.07.008

11. A. M. Eltweri, A. L. Thomas, M. Metcalfe, P. C. Calder, A. R. Dennison and D. J. Bowrey, Potential applications of fish oils rich in omega-3 polyunsaturated fatty acids in the management of gastrointestinal cancer, Clin. Nutr. 36 (2017) 65–78; https://doi.org/10.1016/j.clnu.2016.01.007

12. E. N. Alencar, F. H. Xavier-Jr, A. R. V. Morais, T. R. F. Dantas, N. Dantas-Santos, L. M. Verissimo, V. L. G. Rehder, G. M. Chaves, A. G. Oliveira and E. S. T. Egito, Chemical characterization and antimicrobial activity evaluation of natural oil nanostructured emulsions, J. Nanosci. Nanotechnol. 15 (2015) 880–888; https://doi.org/10.1166/jnn.2015.9187

13. L. Amaral-Machado, F. H. Xavier-Jr, R. Rutckeviski, A. R. V. Morais, E. N. Alencar, T. R. F. Dantas, A. K. M. Cruz, J. Genre, A. A. Silva-Jr, M. F. F. Pedrosa, H. A. O. Rocha and E. S. T. Egito, New trends on antineoplastic therapy research: Bullfrog (Rana catesbeiana Shaw) oil nanostructured systems, Molecules 21 (2016) 585; https://doi.org/10.3390/molecules21050585

14. D. J. McClements and E. A. Decker, Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci. 65 (2000) 1270–1282; https://doi.org/10.1111/j.1365-2621.2000.tb10596.x

15. ‘Stability testing of active pharmaceutical ingredients and finished pharmaceutical products’, in 953, ed. by World_Health_Organization, 2009, pp. 1–53; http://apps.who.int/medicinedocs/documents/s19133en/s19133en.pdf; last access date June 12, 2018.

16. F. H. Xavier-Jr, K. G. H. Silva, I. E. G. Farias, A. R. V. Morais, E. N. Alencar, I. B. Araujo, A. G. Oliveira and E. S. T. Egito, Prospective study for the development of emulsion systems containing natural oil products, J. Drug Deliv. Sci. Technol. 22 (2012) 367–372; https://doi.org/10.1016/S1773-2247(12)50061-4

17. C. Jacobsen, M. B. Let, N. S. Nielsen and A. S. Meyer, Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation, Trends Food Sci. Technol. 19 (2008) 76–93; https://doi.org/10.1016/j.tifs.2007.08.001

18. C. C. Berton-Carabin, M.-H. Ropers and C. Genot, Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer, Compr. Rev. Food Sci. Food Saf. 13 (2014) 945–977; https://doi.org/10.1111/1541-4337.12097

19. M. Golding and T. J. Wooster, The influence of emulsion structure and stability on lipid digestion, Curr. Opin. Colloid Interface Sci. 15 (2010) 90–101; https://doi.org/10.1016/j.cocis.2009.11.006

20. R. C. Rowe, Handbook of Pharmaceutical Excipients, Pharmaceutical Press, London 2012; ISBN 978 1 58212 135 2 (USA)

21. V. Krstonošić, L. Dokić, P. Dokić and T. Dapčević, Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate, Food Hydrocoll. 23 (2009) 2212–2218; https://doi.org/10.1016/j.foodhyd.2009.05.003

22. K. Shimada, H. Muta, Y. Nakamura, H. Okada, K. Matsuo, S. Yoshioka, T. Matsudaira and T. Nakamura, Iron-binding property and antioxidative activity of xanthan on the autoxidation of soybean oil in emulsion, J. Agric. Food Chem. 42 (1994) 1607–1611; https://doi.org/10.1021/jf00044a004

23. M. Hatzopoulos, C. James, S. Rogers, I. Grillo, P. Dowding and J. Eastoe, Effects of small ionic amphiphilic additives on reverse microemulsion morphology, J. Colloid Interface Sci. 421 (2014) 56–63; https://doi.org/10.1016/j.jcis.2014.01.024

24. J. Marcus, S. Wolfrum, D. Touraud and W. Kunz, Influence of high intensity sweeteners and sugar alcohols on a beverage microemulsion, J. Colloid Interface Sci. 460 (2015) 105–112; https://doi.org/10.1016/j.jcis.2015.08.036

25. T. N. Barradas, V. E. B. Campos, J. P. Senna, C. S. C. Coutinho, B. S. Tebaldi, K. G. d. H. Silva and C. R. E. Mansur, Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants, Colloids Surf. A Physicochem. Eng. Asp. 480 (2015) 214–221; https://doi.org/10.1016/j.colsurfa.2014.12.001

26. M. I. G. Rosas, J. M. Castro, L. A. O. Martínez, L. S. Trujillo and O. M. Belloso, Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils, Food Hydrocoll. 52 (2016) 438–446; https://doi.org/10.1016/j.foodhyd.2015.07.017

27. S. Mayer, J. Weiss and D. J. McClements, Behavior of vitamin E acetate delivery systems under simulated gastrointestinal conditions: Lipid digestion and bioaccessibility of low-energy nanoemulsions, J. Colloid Interface Sci. 404 (2013) 215–222; https://doi.org/10.1016/j.jcis.2013.04.048

28. C. Arancibia, N. Riquelme, R. Zúñiga and S. Matiacevich, Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions, Innov. Food Sci. Emerg. Technol. 44 (2017) 8–166; https://doi.org/10.1016/j.ifset.2017.06.009

29. C. Poyato, I. Navarro-Blasco, M. I. Calvo, R. Y. Cavero, I. Astiasarán and D. Ansorena, Oxidative stability of O/W and W/O/W emulsions: Effect of lipid composition and antioxidant polarity, Food Res. Int. 51 (2013) 132–140; https://doi.org/10.1016/j.foodres.2012.11.032

30. D. S. Gerding, B. D. Oomah, F. Acevedo, E. Morales, M. Bustamante, C. Shene and M. Rubilar, High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability, Food Chem. 199 (2016) 463–470; https://doi.org/10.1016/j.foodchem.2015.12.004

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information


IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5606 5606 2534
PDF Downloads 174 174 51