Therapeutic bullfrog oil-based nanoemulsion for oral application: Development, characterization and stability

Open access


The aim of this study was to develop, optimize, and characterize a stable therapeutic bullfrog oil based nanoemulsion for oral application using a rational experimental design approach. The optimized oral nanoemulsion contained 0.2 % sodium benzoate and 0.02 % propyl-paraben as preservatives; 0.1 % sucralose and 0.4 % acesulfam K as sweeteners and 0.1 % tutti-frutti as flavoring to mask the unpleasant organoleptic characteristics of bullfrog oil. The oral O/W-nanoemulsion showed the droplet size, PDI, zeta potential, and pH of 410 ± 8 nm, 0.20 ± 0.02, –38 ± 2.5 mV, and 6.43 ± 0.05, respectively. The optimized oral nanoemulsion showed a milky single-phase and optimal physical stability at 25 °C for 90 days. Indeed, higher oxidation induction time and lower formation of peroxides in the oral nanoemulsion were responsible for improving its stability. A therapeutic delivery system containing bullfrog oil for oral application was successfully developed and optimized with ideal thermo-oxidative stability.

1. J. L. Burguera and M. Burguera, Analytical applications of emulsions and microemulsions, Talanta 96 (2012) 11–20;

2. A. H. Saberi, Y. Fang and D. J. McClements, Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification, J. Colloid Interface Sci. 391 (2013) 95–102;

3. D. T. Piorkowski and D. J. McClements, Beverage emulsions: Recent developments in formulation, production, and applications, Food Hydrocoll. 42 (2014) 5–41;

4. D. J. McClements and Y. Li, Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components, Adv. Colloid Interface Sci. 159 (2010) 213–228;

5. P. Karthik and C. Anandharamakrishnan, Enhancing omega-3 fatty acids nanoemulsion stability and in-vitro digestibility through emulsifiers, J. Food Eng. 187 (2016) 92–105;

6. I. A. Nehdi, Characteristics and composition of Washingtonia filifera (Linden ex André) H. Wendl. seed and seed oil, Food Chem. 126 (2011) 197–202;

7. R. Rutckeviski, F. H. Xavier-Jr, A. R. V. Morais, E. N. Alencar, L. A. Machado, J. Genre, A. Gondim and E. S. T. Egito, Thermo-oxidative stability evaluation of Bullfrog (Rana catesbeiana Shaw) oil, Molecules 22 (2017) 606;

8. J. R. Nelson, O. Wani, H. T. May and M. Budoff, Potential benefits of eicosapentaenoic acid on atherosclerotic plaques, Vascul. Pharmacol. 91 (2017) 1–9;

9. D. S. Kelley, Modulation of human immune and inflammatory responses by dietary fatty acids, Nutrition 17 (2001) 669–673;

10. E. Kurtys, U. L. M. Eisel, J. M. Verkuyl, L. M. Broersen, R. A. J. O. Dierckx and E. F. J. Vries, The combination of vitamins and omega-3 fatty acids has an enhanced anti-inflammatory effect on microglia, Neurochem. Int. 99 (2016) 206–214;

11. A. M. Eltweri, A. L. Thomas, M. Metcalfe, P. C. Calder, A. R. Dennison and D. J. Bowrey, Potential applications of fish oils rich in omega-3 polyunsaturated fatty acids in the management of gastrointestinal cancer, Clin. Nutr. 36 (2017) 65–78;

12. E. N. Alencar, F. H. Xavier-Jr, A. R. V. Morais, T. R. F. Dantas, N. Dantas-Santos, L. M. Verissimo, V. L. G. Rehder, G. M. Chaves, A. G. Oliveira and E. S. T. Egito, Chemical characterization and antimicrobial activity evaluation of natural oil nanostructured emulsions, J. Nanosci. Nanotechnol. 15 (2015) 880–888;

13. L. Amaral-Machado, F. H. Xavier-Jr, R. Rutckeviski, A. R. V. Morais, E. N. Alencar, T. R. F. Dantas, A. K. M. Cruz, J. Genre, A. A. Silva-Jr, M. F. F. Pedrosa, H. A. O. Rocha and E. S. T. Egito, New trends on antineoplastic therapy research: Bullfrog (Rana catesbeiana Shaw) oil nanostructured systems, Molecules 21 (2016) 585;

14. D. J. McClements and E. A. Decker, Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems, J. Food Sci. 65 (2000) 1270–1282;

15. ‘Stability testing of active pharmaceutical ingredients and finished pharmaceutical products’, in 953, ed. by World_Health_Organization, 2009, pp. 1–53;; last access date June 12, 2018.

16. F. H. Xavier-Jr, K. G. H. Silva, I. E. G. Farias, A. R. V. Morais, E. N. Alencar, I. B. Araujo, A. G. Oliveira and E. S. T. Egito, Prospective study for the development of emulsion systems containing natural oil products, J. Drug Deliv. Sci. Technol. 22 (2012) 367–372;

17. C. Jacobsen, M. B. Let, N. S. Nielsen and A. S. Meyer, Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation, Trends Food Sci. Technol. 19 (2008) 76–93;

18. C. C. Berton-Carabin, M.-H. Ropers and C. Genot, Lipid oxidation in oil-in-water emulsions: Involvement of the interfacial layer, Compr. Rev. Food Sci. Food Saf. 13 (2014) 945–977;

19. M. Golding and T. J. Wooster, The influence of emulsion structure and stability on lipid digestion, Curr. Opin. Colloid Interface Sci. 15 (2010) 90–101;

20. R. C. Rowe, Handbook of Pharmaceutical Excipients, Pharmaceutical Press, London 2012; ISBN 978 1 58212 135 2 (USA)

21. V. Krstonošić, L. Dokić, P. Dokić and T. Dapčević, Effects of xanthan gum on physicochemical properties and stability of corn oil-in-water emulsions stabilized by polyoxyethylene (20) sorbitan monooleate, Food Hydrocoll. 23 (2009) 2212–2218;

22. K. Shimada, H. Muta, Y. Nakamura, H. Okada, K. Matsuo, S. Yoshioka, T. Matsudaira and T. Nakamura, Iron-binding property and antioxidative activity of xanthan on the autoxidation of soybean oil in emulsion, J. Agric. Food Chem. 42 (1994) 1607–1611;

23. M. Hatzopoulos, C. James, S. Rogers, I. Grillo, P. Dowding and J. Eastoe, Effects of small ionic amphiphilic additives on reverse microemulsion morphology, J. Colloid Interface Sci. 421 (2014) 56–63;

24. J. Marcus, S. Wolfrum, D. Touraud and W. Kunz, Influence of high intensity sweeteners and sugar alcohols on a beverage microemulsion, J. Colloid Interface Sci. 460 (2015) 105–112;

25. T. N. Barradas, V. E. B. Campos, J. P. Senna, C. S. C. Coutinho, B. S. Tebaldi, K. G. d. H. Silva and C. R. E. Mansur, Development and characterization of promising o/w nanoemulsions containing sweet fennel essential oil and non-ionic sufactants, Colloids Surf. A Physicochem. Eng. Asp. 480 (2015) 214–221;

26. M. I. G. Rosas, J. M. Castro, L. A. O. Martínez, L. S. Trujillo and O. M. Belloso, Long-term stability of food-grade nanoemulsions from high methoxyl pectin containing essential oils, Food Hydrocoll. 52 (2016) 438–446;

27. S. Mayer, J. Weiss and D. J. McClements, Behavior of vitamin E acetate delivery systems under simulated gastrointestinal conditions: Lipid digestion and bioaccessibility of low-energy nanoemulsions, J. Colloid Interface Sci. 404 (2013) 215–222;

28. C. Arancibia, N. Riquelme, R. Zúñiga and S. Matiacevich, Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions, Innov. Food Sci. Emerg. Technol. 44 (2017) 8–166;

29. C. Poyato, I. Navarro-Blasco, M. I. Calvo, R. Y. Cavero, I. Astiasarán and D. Ansorena, Oxidative stability of O/W and W/O/W emulsions: Effect of lipid composition and antioxidant polarity, Food Res. Int. 51 (2013) 132–140;

30. D. S. Gerding, B. D. Oomah, F. Acevedo, E. Morales, M. Bustamante, C. Shene and M. Rubilar, High carotenoid bioaccessibility through linseed oil nanoemulsions with enhanced physical and oxidative stability, Food Chem. 199 (2016) 463–470;

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 5606 5606 2534
PDF Downloads 174 174 51