Pancreatic lipase inhibitory activity of selected pharmaceutical agents

Open access


Twenty-five structurally diverse compounds have been tested in vitro for their pancreatic lipase (PL) inhibitory activity. Despite the diversity of tested compounds, the relationship comprising structural attributes of the compounds could be established to correlate with the observed inhibitory activity. Compounds that exerted inhibitory action through surface activity were of different profile from the rest of compounds. When co-incubated with orlistat (OsT), important synergistic effects for some compounds (orphenadrine, gliclazide, cefuroxime and sulfacetamide) were revealed, while antagonistic effects were demonstrated for others (camphor sulfonic acid and dinitro salicylic acid). Docking studies for the most active molecules were performed and molecular interaction forces with the PL active site were identified. The results suggested co-binding of OsT along with the other inhibitor in the binding site in cases of synergistic effect but not in the case of antagonistic effect. These results were additionally supported by affinity capillary electrophoresis. In conclusion, synergistic lipase inhibitory activity between OsT and some other pharmaceutical compounds was demonstrated for the first time, which might help improve the pharmacological effect of OsT.

1. F. K. Winkler, Structure of human pancreatic lipase, Nature 343 (1990) 771–774;

2. S. Ransac, Y. Gargouri, F. Marguet, G. Buono, C. Beglinger, P. Hildebrand, H. Lengsfeld, P. Hadváry and R. Verger, Covalent inactivation of lipases, Methods Enzymol. 286 (1997) 190–231;

3. G. Singh, S. Suresh, B. V. Krishna and K. R. Kumar, Lipase inhibitors from plants and their medical applications, Int. J. Pharm. Pharm. Sci.7 (2015) 1–5.

4. E. Kato, M. Yama, R. Nakagomi, T. Shibata, K. Hosokawa and J. Kawabata, Substrate-like water soluble lipase inhibitors from Filipendula kamtschatica, Bioorg. Med. Chem. Lett. 22 (2012) 6410–6412;

5. Y. Narita, K. Iwai, T. Fukunaga and O. Nakagiri, Inhibitory activity of chlorogenic acids in decaffeinated green coffee beans against porcine pancreas lipase and effect of a decaffeinated green coffee bean extract on an emulsion of olive oil, Biosci. Biotechnol. Biochem. 76 (2012) 2329–2331;

6. E. Mentese, F. Yιlmaz, N. Karaali, S. Ülker and B. Kahveci, Rapid synthesis and lipase inhibition activity of some new benzimidazole and perimidine derivatives, Bioorg. Khim. 40 (2014) 363–369;

7. Y. H. Jo, S. B. Kim, Q. Liu, J. W. Lee, B. Y. Hwang and M. K. Lee, Benzylated and prenylated flavonoids from the root barks of Cudrania tricuspidata with pancreatic lipase inhibitory activity, Bioorg. Med. Chem. Lett. 25 (2015) 3455–3457;

8. S. N. Sridhar, G. Ginson, P. O. Venkataramana Reddy, M. P. Tantak, D. Kumar and A. T. Paul, Synthesis, evaluation and molecular modeling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors, Bioorg. Med. Chem. 25 (2017) 609–620;

9. A. M. Brzozowski, U. Derewenda, Z. S. Derewenda, G. G. Dodson, D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S. A. Patkar and L. Thim, A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature 351 (1991) 491–494;

10. M. P. Egloff, L. Sarda, R. Verger, C. Cambillau and H. van Tilbeurgh, Crystallographic study of the structure of colipase and of the interaction with pancreatic lipase, Protein Sci. 4 (1995) 44–57;

11. A. Bourbon-Freie, R. E. Dub, X. Xiao and M. E. Lowe, Trp-107 and trp-253 account for the increased steady state fluorescence that accompanies the conformational change in human pancreatic triglyceride lipase induced by tetrahydrolipstatin and bile salt, J. Biol. Chem. 284 (2009) 14157–14164;

12. V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carrièreand and J. F. Cavalier, Effects of surfactants on lipase structure, activity, and inhibition, Pharm. Res. 8 (2011) 1831–1842;

13. P. Alam, G. Rabbani, G. Badr, B. M. Badr and R. H. Khan, The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase, Cell Biochem. Biophys. 71 (2015) 1199–1206;

14. E. Mateos-Diaz, S. Amara, A. Roussel, S. Longhi, C. Cambillau and F. Carrière, Probing conformational changes and interfacial recognition site of lipases with surfactants and inhibitors, Methods Enzymol. 583 (2017) 279–307;

15. I. I. Hamdan, F. Afifi and M. O. Taha, In vitro alpha amylase inhibitory effect of some clinically-used drugs, Pharmazie 59 (2004) 799–801.

16. Y. Bustanji, M. Mohammad Mohammad, M. Hudaib, K. Tawaha, I. M. Al-Masri, H. S. Al Khatib, A. Issa and F. Q. Alali, Screening of some medicinal plants for their pancreatic lipase inhibitory potential, Jordan J. Pharm. Sci. 4 (2011) 81–88.

17. FRED (version 2.2.5) 2009. OpenEye Scientific Software (, Santa Fe, USA.

18. S. Habtemariam, The anti-obesity potential of sigmoidin A, Pharm. Biol. 50 (2012) 1519–1522;

19. M. Karamać and R. Amarowicz, Inhibition of pancreatic lipase by phenolic acids-examination in vitro, Z. Naturforsch. C. 51 (1996) 903–905.

20. J. A. van Diepen, I. O. C. M. Vroegrijk, J. F. P. Berbée, S. E. Shoelson, J. A. Romijn, L. M. Havekes, P. C. N. Rensen and P. J. Voshol, Aspirin reduces hypertriglyceridemia by lowering VLDL-triglyceride production in mice fed a high-fat diet, Am. J. Physiol. Endocrinol. Metab. 301 (2011) 1099–1107;

21. A. Kumarand and S. Chauhan, Monte Carlo method based QSAR modeling of natural lipase inhibitors using hybrid optimal descriptors, SAR QSAR Environ. Res. 28 (2017) 179–197;

22. R. Emral, O. Köseoğlulari, V. Tonyukuk, A. R. Uysal, N. Kamel and D. Corapcioğlu, The effect of short-term glycemic regulation with gliclazide and metformin on postprandial lipemia, Exp. Clin. Endocrinol. Diabetes 113 (2005) 80–84;

23. L. S. Chupak, X. Zheng, S. Hu, Y. Huang, M. Ding, M. A. Lewis, R. S. Westphal, Y. Blat, A. McClure and R. G. Gentles, Structure activity relationship studies on chemically non-reactive glycine sulfonamide inhibitors of diacylglycerol lipase, Bioorg. Med. Chem. 24 (2016) 1455–1468;

24. F. J. Janssen, H. Deng, M. P. Baggelaar, M. Allarà, T. van der Wel, H. den Dulk, A. Ligresti, A. C. van Esbroeck, R. McGuire, V. Di Marzo, H. S. Overkleeft and M. van der Stelt, Discovery of glycine sulfonamides as dual inhibitors of sn-1-diacylglycerol lipase α and α/β-hydrolase domain 6, J. Med. Chem. 57 (2014) 6610–6622;

25. J. Kim, Y. S. Lee, C. S. Kim and J. S. Kim, Betulinic acid has an inhibitory effect on pancreatic lipase and induces adipocyte lipolysis, Phytother. Res. 26 (2012) 1103–1106;

26. Y. Bustanji, I. M. Al-Masri, M. Mohammad, M. Hudaib, K. Tawaha, H. Tarazi and H. S. Alkhatib, Pancreatic lipase inhibition activity of trilactoneterpenes of Ginkgo biloba, J. Enzyme Inhib. Med. Chem. 26 (2011) 453–459;

27. Y. M. Al-Hiari, V. N. Kasabri, A. K. Shakya, M. H. Alzweiri, F. U. Afifi, Y. K. Bustanji and I. M. Al-Masri, Fluoroquinolones: novel class of gastrointestinal dietary lipid digestion and absorption inhibitors, Med. Chem. Res. 23 (2014) 3336–3346;

28. P. Hadváry, W. Sidler, W. Meister, W. Vetter and H. Wolfer, The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase, J. Biol. Chem. 266 (1991) 2021–2027.

29. C. Schouand and N. H. Heegaard, Recent applications of affinity interactions in capillary electrophoresis, Electrophoresis 27 (2006) 44–59;

30. A. Lookene, N. Skottova and G. Olivecrona, Interactions of lipoprotein lipase with the active-site inhibitor tetrahydrolipstatin (Orlistat), Eur. J. Biochem. 222 (1994) 395–403;

31. H. Lee, S. Cao, K. E. Hevener, L. Truong, J. L. Gatuz, K. Patel, A. K. Ghosh and M. E. Johnson, Synergistic inhibitor binding to the papain-like protease of human SARS corona virus: mechanistic and inhibitor design implications, Chem. Med. Chem. 8 (2013) 1361–1372;

32. C. W. Murray and T. L. Blundell, Structural biology in fragment-based drug design, Curr. Opin. Struct. Biol. 20 (2010) 497–507;

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4656 4656 2024
PDF Downloads 305 305 85