Glucose Deprivation Enhances the Antiproliferative Effects of Oral Hypoglycemic Biguanides in Different Molecular Subtypes of Breast Cancer: an in Vitro Study

Open access


Extensive in vitro studies have been conducted to evaluate the anticancer activity of oral hypoglycemic agents. Many of these studies experienced detrimental limitations, since they were conducted on cancer cells commonly grown in culture media consisting of extremely high concentrations of growth factors and glucose. The present study was aimed at exploring the antiproliferative effects of the commonly studied metformin and the less frequently reported phenformin oral hypoglycemic agents on different molecular subtypes of breast cancer under rich glucose and glucose deprived conditions. Our results indicate that under glucose deprived conditions, which better reflect the factual glucose-starved solid tumors in vivo, biguanides exert more antiproliferative activities against the three molecular subtypes of breast cancer cell lines examined in this study. In addition, the observed antiproliferative activities of biguanides appear to be mediated by apoptosis induction in breast cancer cells. This induction is significantly augmented under glucose deprived conditions.

1. K. M. De Bruijn, L. R. Arends, B. E. Hansen, S. Leeflang, R. Ruiter and C. H. van Eijck, Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer, Br. J. Surg. 100 (2013) 1421-1429;

2. WHO, Global Status Report on Noncommunicable Diseases 2010, Description of the Global Burden of NCDs, Their Risk Factors and Determinants, World Health Organization, Geneva, Switzerland, 2011.

3. Z. J. Zhang and S. Li, The prognostic value of metformin for cancer patients with concurrent diabetes: a systematic review and meta-analysis, Diabetes Obes. Metab. 16 (2014) 707-710;

4. I. Wolf, S. Sadetzki, R. Catane, A. Karasik and B. Kaufman, Diabetes mellitus and breast cancer, Lancet Oncol. 6 (2005) 103-111;

5. K. S. Peairs, B. B. Barone, C. F. Snyder, H. C. Yeh, K. B. Stein, R. L. Derr, F. L. Brancati and A. C. Wolff, Diabetes mellitus and breast cancer outcomes: a systematic review and meta-analysis, J. Clin. Oncol. 29 (2011) 40-46;

6. D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell 144 (2011) 646-674;

7. C. Catsburg, M. J. Gunter, C. Chen, M. L. Cote, G. C. Kabat, R. Nassir, L. Tinker, J. Wactawski- Wende, D. L. Page and T. E. Rohan, Insulin, estrogen, inflammatory markers, and risk of benign proliferative breast disease, Cancer Res. 74 (2014) 3248-3258;

8. M. Jalving, J. A. Gietema, J. D. Lefrandt, S. de Jong, A. K. Reyners, R. O. Gans and E. G. de Vries, Metformin: taking away the candy for cancer?, Eur. J. Cancer 46 ( 2010) 2 369-2380; h ttp://

9. J. H. Scarpello and H. C. Howlett, Metformin therapy and clinical uses, Diab. Vasc. Dis. Res. 5(2008) 157-167;

10. W. C. Knowler, E. Barrett-Connor, S. E. Fowler, R. F. Hamman, J. M. Lachin, E. A. Walker and D. M. Nathan, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin, N. Engl. J. Med. 346 (2002) 393-403;

11. Y. Zhuang and W. K. Miskimins, Cell cycle arrest in metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1, J. Mol. Signal.3 (2008) 18;

12. M. Alalem, A. Ray and B. K. Ray, Metformin induces degradation of mTOR protein in breast cancer cells, Cancer Med. 5 (2016) 3194-3204;

13. P. J. Goodwin, V. Stambolic, J. Lemieux, B. E. Chen, W. R. Parulekar, K. A. Gelmon, D. L. Hershman, T. J. Hobday, J. A. Ligibel, I. A. Mayer, K. I. Pritchard, T. J. Whelan, P. Rastogi and L. E. Shepherd, Evaluation of metformin in early breast cancer: a modification of the traditional paradigm for clinical testing of anti-cancer agents, Breast Cancer Res. Treat. 126 (2011) 215-220;

14. M. A. Khanfar, S. K. Bardaweel, M. R. Akl and K. A. El Sayed, Olive oil-derived oleocanthal as potent inhibitor of mammalian target of rapamycin: Biological evaluation and molecular modeling studies, Phytother. Res. 29 (2015) 1776-1782;

15. M. R. Owen, E. Doran and A. P. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochem. J. 348 (2000)607-614.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 434 434 25
PDF Downloads 149 149 10