Catha Edulis Active Principle, Cathinone, Suppresses Motor Coordination, Accelerates Anxiety and Alters the Levels of Dopamine and its Metabolites in the Limbic Areas of Male Swiss Albino Mice

Open access

Abstract

Cathinone, the active principle of khat (Catha edulis), stimulates, excites and produces euphoric feelings in khat users. Locomotor and rearing activities, either individual or in groups, of male Swiss albino mice were decreased significantly compared to the control. Motor coordination tests (rotarod, rope climb and grip tests) have shown decreased motor performance in the mice treated with cathinone compared to the control. The elevated plus maze test has shown significant anxiety in the mice compared to the control. Contents of dopamine and its metabolite, homovanillic acid, were increased in the limbic areas compared to the control group. In contrast, contents of 3,4-dihydroxyphenyl acetic acid were depleted significantly and dose dependently compared to the control group in the limbic areas of mice. In conclusion, natural cathinone has depleted motor coordination, accelerated anxiety in mice and altered the contents of dopamine and its metabolites.

1. M. M. Safhi, M. F. Alam, S. Hussain, M. A. H. Siddiqui, G. Khuwaja, I. A. J. Khardali, R. M. Al-Sanosi and F. Islam, Cathinone, an active principle of Catha edulis accelerates oxidative stress in limbic area of Swiss albino mice, J. Ethnopharmacol. 156 (2014) 102-106; https://doi.org/10.1016/j.jep.2014.08.004

2. N. T. Wabe and M. A. Mohammed, What science says about khat (Catha edulis Forsk)? Overview of chemistry, toxicology and pharmacology, J. Exp. Integr. Med. 2 (2012) 29-37; https://doi.org/10.5455/jeim.221211.rw.005

3. S. Qureshi, M.Tariq, F. S. El-Feraly and I. A. Elal-Meshal, Genetic effects of chronic treatment with cathinone in mice, Mutagenesis 3 (1988) 481-483; https://doi.org/10.1093/mutage/3.6.481

4. M. M. Safhi, M. F. Alam, S. Hussain, M. A. H. Siddiqui, G. Khuwaja, I. A. J. Khardali, R. M. Al- Sanosi and F. Islam, Toxic effect of cathinone (an active principle of Catha edulis) on brain lipids in Swiss albino mice, Environ. Conserv. J. 15 (2014) 5-11.

5. J. D. Connor, A. Rampes and E. Makonnen, Comparison of effects of khat extract and amphetamine on motor behaviors in mice, J. Ethnopharmacol. 81 (2002) 65-71; https://doi.org/10.1016/S0378-8741(02)00035-1

6. S. K. Kulkarni, Handbook of Experimental Pharmacology, 3rd ed., Vallabh Prakashan, New Delhi 2010, pp. 117-119.

7. M. A. Kelly, M. Rubinstein, T. J. Phillips, C. N. Lessov, S. Burkhart-Kasch, G. Zhang, J. R. Bunzow, Y. Fang, G. A. Gerhardt, D. K. Grandy and M. J. Low, Locomotor activity in D2 dopamine receptor- deficient mice is determined by gene dosage, genetic background and developmental adaptations, J. Neurosci. 18 (1998) 3470-3479; https://doi.org/10.1523/JNEUROSCI.18-09-03470.1998

8. D. V. Garg, V. J. Dhar, A. Sharma and R. Dutt, Experimental model for antianxiety activity. A review, Pharmacol. Online 1 (2011) 394-404.

9. P. M. Moran, L. S. Higgins, B. Cordell and P. C. Moser, Age-related learning deficits in transgenic mice expressing the 721-amino acid isoform of human beta-amyloid precursor protein, Proc. Nat.Acad. Sci. USA (PNAS) 92 (1995) 5341-5345.

10. K. S. Zafar, A. Siddiqui, I. Sayeed, M. Ahmad, S. Salim and F. Islam, Dose-dependent protective effect of selenium in rat model of Parkinson’s disease: neurobehavioral and neurochemical evidences, J. Neurochem. 84 (2003) 438-446; https://doi.org/10.1046/j.1471-4159.2003.01531.x

11. P. Kalix and O. Braenden, Pharmacological aspects of the chewing of khat leaves, Pharmacol. Rev.37 (1985) 149-164.

12. M. Al-Mamary, M. Al-Habori, A. M. Al-Aghbari and M. M. Baker, Investigation into the toxicological effects of Catha edulis leaves: a short term study in animals, Phytother. Res. 16 (2002) 127-132;https://doi.org/10.1002/ptr.835

13. J. A. Marusich, K. R. Grant, B. E. Blough and J. L. Wiley, Effects of synthetic cathinones contained in ‘‘bath salts’’ on motor behavior and a functional observational battery in mice, Neurotoxicology 33 (2012) 1305-1313; https://doi.org/10.1016/j.neuro.2012.08.003

14. G. C. Wagner, K. Prestone, G. A. Ricaurte, C. R. Schuster and L. S. Sieden, Neurochemical similarities between d,l-cathinone and d-amphetamine, Drug Alcohol Depend. 9 (1982) 279-284; https://doi.org/10.1016/0376-8716(82)90067-9

15. N. D. Volkow, J. S. Fowler, G. J. Wang, J. M. Swanson and F. Telang. Dopamine in drug abuse and addiction: results of imaging studies and treatment implications, Arch. Neurol. 64 (2007) 1575-1579.

16. J. Nielsen, Cathinone affects dopamine and 5-hydroxytryptamine neurons in vivo as measured by changes in metabolites and synthesis in four forebrain regions in the rat, Neuropharmacology 24 (1985) 845-852; https://doi.org/10.1016/0028-3908(85)90035-8

17. S. C. Daubner, T. Le and S. Wang, Tyrosine hydroxylase and regulation of dopamine synthesis, Arch. Biochem. Biophys. 508 (2011) 1-12; https://doi.org/10.1016/j.abb.2010.12.017

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information


IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 30
PDF Downloads 48 48 16