Hydroxyapatite-ciprofloxacin delivery system: Synthesis, characterisation and antibacterial activity

Open access

Abstract

The main objective of this study was to synthesize hydroxyapatite-ciprofloxacin composites using a chemical precipitation method and to evaluate the properties and in vitro release profile of the drug from the hydroxyapatite-ciprofloxacin composites. Composite characterization was achieved by FT-IR, XRD and DLS. Ciprofloxacin determination was accomplished by HPLC, resulting in good incorporation efficiency of the drug (18.13 %). The in vitro release study (Higuchi model C = K t1/2 and Ritger-Peppas model, C = K t0.6) showed a diffusion-controlled mechanism. The antibacterial activity showed that the bacterial growth inhibition zones were approximately equal for the synthesis composites and for the mechanical mixture on the Staphylococcus aureus germ.

The use of hydroxyapatite, which is a biocompatible, bioactive and osteoconductive material, with ciprofloxacin, which has good antibacterial activity in this composite, makes it suitable for the development of bone grafts. Furthermore, the synthesis process allows a slow local release of the drug.

1. M. Panteli and P. V. Giannoudis, Chronic osteomyelitis: what the surgeon needs to know, Efort. Open Rev. 1 (2016) 128–135; http://doi.org/10.1302/2058-5241.1.000017

2. H. S. Fraimow, Systemic Antimicrobial Therapy in Osteomyelitis, Semin. Plast. Surg. 23 (2009) 90–99; http://doi.org/10.1055/s-0029-1214161

3. D. Bamberger and S. Boyd, Management of Staphylococcus aureus infections, Am. Fam. Physician. 72 (2005) 2474–2481.

4. M. E. Olson and A. R. Horswill, Staphylococcus aureus osteomyelitis: bad to the bone, Cell Host Microbe 13 (2013) 629–631; http://doi.org/10.1016/j.chom.2013.05.015

5. E. Goldstein, Systemic antibiotic therapy for chronic osteomyelitis in adults, Clin. Infect. Dis. 54 (2012) 393–407; http://doi.org/10.1093/cid/cir842

6. J. Kelm, T. Regitz, E. Schmitt, W. Jung and K. Anagnostakos, In vivo and in vitro studies of antibiotic release from and bacterial growth inhibition by antibiotic-impregnated polymethylmethacrylate hip spacers, Antimicrob. Agents Chemother. 50 (2006) 332–335; http://doi.org/10.1128/AAC.50.1.332-335.2006

7. J. S. Gogia, J. P. Meehan, P. E. Cesare and A. A. Jamali, Local antibiotic therapy in osteomyelitis, Semin Plast Surg. 23 (2009) 100–107; http://doi.org/10.1055/s-0029-1214162

8. O. S. Kluin, H. C. van der Mei, H. J. Busscher and D. Neut, Biodegradable vs non-biodegradable antibiotic delivery devices in the treatment of osteomyelitis, Expert Opin. Drug Deliv. 10 (2013) 341–351; http://doi.org/10.1517/17425247.2013.751371

9. W. Habraken, P. Habibovic, M. Epple and M. Bohner, Calcium phosphates in biomedical applications: materials for the future? Materials Today 19 (2016) 69–87; http://doi.org/10.1016/j.mattod.2015.10.008

10. K. Uemura, A. Kanamori, K. Aoto, M. Yamazaki and M. Sakane, Novel unidirectional porous hydroxyapatite used as a bone substitute for open wedge high tibial osteotomy, J. Mater. Sci. Mater. Med. 25 (2014) 2541–2547; http://doi.org/10.1007/s10856-014-5266-5

11. D. Neut, R. J. B. Dijkstra, J. I. Thompson, C. Kavanagh, H. C. van der Mei, and H. J. Busscher, A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses, Eur. Cell Mater. 29 (2015) 42–56; http://doi.org/10.22203/eCM

12. G. Shazly and K. Mohsin, Dissolution improvement of solid self-emulsifying drug delivery systems of fenofibrate using an inorganic high surface adsorption material, Acta Pharm. 65 (2015) 29–42; http://doi.org/10.1515/acph-2015-0003

13. G. Devanand Venkatasubbu, S. Ramasamy, V. Ramakrishnan and J. Kumar, Nanocrystalline hydroxyapatite and zinc doped hydroxyapatite as carrier material for controlled delivery of ciprofloxacin, 3 Biotech. 1 (2011) 173–186; http://doi.org/10.1007/s13205-011-0021-9

14. D. P. Minh, N. D. Tran, A. Nzihou and P. Sharrock, One-step synthesis of calcium hydroxyapatite from calcium carbonate and orthophosphoric acid under moderate conditions, Ind. Eng. Chem. Res. 52 (2013) 1439–1447; http://doi.org/10.1021/ie302422d

15. A. Mocanu, R. Melinte, M. Popescu, C. V. Manda, O. Croitoru, J. Neamţu and M. V Bubulică, Synthesis and physico-chemical characterization of a hydroxyapatite-ciprofloxacin composite, Curr. Health Sci. J. 40 (2014) 30–34.

16. S. K. Padhyay, P. Kumar and V. Arora, Complexes of quinolone drugs norfloxacin and ciprofloxacin with alkaline earth metal perchlortes, J. Struct. Chem. 47 (2006) 1078–1083.

17. J. Neamtu, M. V. Bubulica, A. Rotaru, C. Ducu, O. E. Balosache, V. C. Manda, A. Turcu-Stiolica, C. Nicolicescu, R. Melinte, M. Popescu and O. Croitoru, Hydroxyapatite-alendronate composite systems for biocompatible materials, J. Therm. Anal. Calorim. 127 (2017) 1567–1582; http://doi.org/10.1007/s10973-016-5905-9

18. M. J. Lukić, L. J. Veselinović, Z. Stojanović, M. Maček-Kržmanc, I. Bračko, S. D. Škapin, S. Marković and D. Uskoković, Peculiarities in sintering behavior of Ca-deficient hydroxyapatite nanopowders, Mater. Lett. 68 (2012) 331–335; http://doi.org/10.1016/j.matlet.2011.10.085

19. I. Turel, N. Bukovec and E. Farkas, Complex formation between some metals and a quinolone family member (ciprofloxacin), Polyhedron 15 (1996) 269–275; http://doi.org/10.1016/0277-5387(95)00231-G

20. A. Destainville, E. Champion and D. Bernache-Assollante, Synthesis, characterization and thermal behaviour of apatite tricalcium phosphate, Mater. Chem. Phys. 80 (2003) 269–277.

21. I. Mobasherpour and M. Heshajin, Synthesis of nanocrystalline hydroxyapatite by using precipitation method, J. Alloys Compd. 430 (2007) 330–333; http://doi.org/10.1016/j.jallcom.2006.05.018

22. V. Uivarosi, Metal complexes of quinolone antibiotics and their applications: An update, Molecules 18 (2013) 11153–11197; http://doi.org/10.3390/molecules180911153

23. G. B. Deacon and R. J. Phillips, Relationships between the carbon-oxygen stretching frequencies of arboxylato complexes and the type of carboxylate coordination, Coord. Chem. Rev. 33 (1980) 227–250; http://doi.org/10.1016/S0010-8545(00)80455-5

24. J. Barbosa, R. Berge´s, I. Toro and V. Sanz-Nebot, Protonation equilibria of quinolone antibacterials in acetonitrile-water mobile phases used in LC, Talanta 44 (1997) 1271–1283; http://doi.org/10.1016/S0039-9140(96)02188-1

25. S. G. Kumar, R. Govindana and E. K. Girija, In situ synthesis, characterization and in vitro studies of ciprofloxacin loaded hydroxyapatite nanoparticles for the treatment of osteomyelitis, J. Mater. Chem. B 2 (2014) 5052–5060; http://doi.org/10.1039/C4TB00339J

26. M. Rauschmann, T. Wichelaus, V. Stirnal, E. Dingeldein, L. Zichner, R. Schnettler and V. Alt, Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections, Biomater. 26 (2005) 2677–2684; http://doi.org/10.1016/j.biomaterials.2004.06.045

27. N. Rameshbabu, T. S. S. Kumar, T. G. Prabhakar, V. S. Sastry, K. V. Murty and K. P. Rao, Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization, J. Biomed. Mater. Res. A. 80 (2007) 581–591; http://doi.org/10.1002/jbm.a.30958

28. W. K. Jung, H. C. Koo, K. W. Kim, S. Shin, S. H. Kim and Y. H. Park, Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol. 74 (2008) 2171–2178.

29. R. C. Li, D. E. Nix and J. J. Schentag, Interaction between ciprofloxacin and metal cations: Its influence on physicochemical characteristics and antibacterial activity, Pharm. Res. 11 (1994) 917–920; http://doi.org/10.1023/A:1018954530250

30. A. Heijink, M. J. Yaszemski, R. Patel, M. S. Rouse, D. G. Lewallen and A. D. Hanssen, Local antibiotic delivery with OsteoSet, DBX, and Collagraft, Clin. Orthop. Relat. Res. 451 (2006) 29–33; http://doi.org/10.1097/01.blo.0000229319.45416.81

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information


IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 296 296 32
PDF Downloads 145 145 19