Charge transfer interaction of organic p-acceptors with the anti-hyperuricemic drug allopurinol: Insights from IR, Raman, 1H NMR and 13C NMR spectroscopies

Open access


The topic of charge-transfer (CT) complexation of vital drugs has attracted considerable attention in recent years owing to their significant physical and chemical properties. In this study, CT complexes derived from the reaction of the anti-hyperuricemic drug allopurinol (Allop) with organic p-acceptors [(picric acid (PA), dichlorodicyanobenzoquinone (DDQ) and chloranil (CHL)] were prepared, isolated and characterized by a range of physicochemical methods, such as IR, Raman, 1H NMR and 13C NMR spectroscopy. The stoichiometry of the complexes was verified by elemental analysis. The results show that all complexes that were formed were based on a 1:1 stoichiometric ratio. This study suggests that the complexation of Allop with either the DDQ or CHL acceptor leads to a direct p®p* transition, whereas the molecules of Allop and PA are linked by intermolecular hydrogen- bonding interactions.

1. A. Chalmers, R. Parker, H. A. Simmonds, W. Snedden and W. E. Watts, The conversion of 4-hydroxypyrazolo[3,4-d]pyrimidine (allopurinol) into 4,6-dihydroxypyrazolo[3,4-d]pyrimidine (oxipurinol) in vivo in the absence of xanthine-oxygen oxidoreductase, Biochem. J. 112 (1969) 527-532.

2. M. Tabandeh, S. Ghassamipour, H. Aqababa, M. Tabatabaei and M. Hasheminejad, Computational design and synthesis of molecular imprinted polymers for selective extraction of allopurinol from human plasma, J. Chromatogr. B 898 (2012) 24-31; DOI: 10.1016/j.jchromb.2012.04.009.

3. T. F. Yu and A. B. Gutman, Effect of allopurinol (4-hydroxypyrazolo-(3,4-d)pyrimidine) on serum and urinary uric acid in primary and secondary gout, Am. J. Med. 37 (1964) 885-891; DOI: 10.1016/0002-9343(64)90131-7.

4. C. G. Jennings, I. S. Mackenzie, R. Flynn, I. Ford, G. Nuki, R. De Caterina, P. L. Riches, S. H. Ralston and T. M. MacDonald, Up-titration of allopurinol in patients with gout, Semin. Arthritis Rheum. 44 (2014) 25-30; DOI: 10.1016/j.semarthrit.2014.01.004.

5. T. R. Mikuls, J. T. Farrar, W. B. Bilker, S. Fernandes, H. R. Schumacher and K. G. Saag, Gout epidemiology: results from the UK general practice research database, 1990-1999, Ann. Rheum. Dis. 64 (2005) 267-272; DOI: 10.1136/ard.2004.024091.

6. J. Prickaerts, E. T. Gieling, A. K. Bruder, F. J. van der Staay and T. Vanmierlo, Long-term effects of prenatal allopurinol treatment on brain plasticity markers in low and normal birth weight piglets, Int. J. Dev. Neurosci. 33 (2014) 29-32; DOI: 10.1016/j.ijdevneu.2013.11.001.

7. D. N. I. Boda, P. Kiss and H. Orvos, Treatment of mothers with allopurinol to produce therapeutic blood levels in newborns, Prenatal Neonatal Med. 4 (1999) 130-134.

8. G. Dong, M. Ren, X. Wang, H. Jiang, X. Yin, S. Wang, X. Wang and H. Feng, Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats, Neurotoxicology 48 (2015) 171-179; DOI: 10.1016/j.neuro.2015.03.015.

9. A. Torreggiani, M. Tamba, A. Trinchero and G. Fini, A spectroscopic and pulse radiolysis study of allopurinol and its copper complex, J. Mol. Struct. 651-653 (2003) 91-99; DOI: 10.1016/S0022-2860(02)00631-2.

10. A. M. A. Adam and M. S. Refat, Nanostructured products of the drug theophylline caused by charge transfer interactions and a binary solvent system: Morphology and nanometry, J. Mol. Liq. 209 (2015) 33-41; DOI: 10.1016/j.molliq.2015.05. 021.

11. B. K. Bozoğlan, S. Tunç and O. Duman, Investigation of neohesperidin dihydrochalcone binding to human serum albumin by spectroscopic methods, J. Lumin. 155 (2014) 198-204; DOI: 10.1016/j. jlumin.2014.06.032.

12. M. Saravanabhavan, K. Sathya, V. G. Puranik and M. Sekar, Synthesis, spectroscopic characterization and structural investigations of new adduct compound of carbazole with picric acid: DNA binding and antimicrobial studies, Spectrochim. Acta A 118 (2014) 399-406; DOI: 10.1016/j. saa.2013.08.115.

13. N. Singh and A. Ahmad, Synthesis and spectrophotometric studies of charge transfer complexes of p-nitroaniline with benzoic acid in different polar solvents, J. Mol. Struct. 1074 (2014) 408-415; DOI: 10.1016/j.molstruc.2014.05.076.

14. E. Selvakumar, A. Chandramohan, G. A. Babu and P. Ramasamy, Synthesis, growth, structural, optical and thermal properties of a new organic salt crystal: 3-nitroanilinium trichloroacetate, J. Cryst. Growth 401 (2014) 323-326; DOI: 10.1016/j.jcrysgro.2013.10.053.

15. N. Singh, I. M. Khan, A. Ahmad and S. Javed, Synthesis, crystallographic and spectrophotometric studies of charge transfer complex formed between 2,2′-bipyridine and 3,5-dinitrosalicylic acid, J. Mol. Liq. 191 (2014) 142-150; DOI: 10.1016/j.molliq.2013.12.002.

16. A. M. A. Adam, Nano-structured complexes of reserpine and quinidine drugs with chloranilic acid based on intermolecular H-bond: Spectral and surface morphology studies, Spectrochim. Acta A 127 (2014) 107-114; DOI: 10.1016/ j.saa.2014.02.077.

17. M. S. Refat, H. A. Saad and A. M. A. Adam, Spectral, thermal and kinetic studies of chargetransfer complexes formed between the highly effective antibiotic drug metronidazole and two types of acceptors: σ- and π-acceptors, Spectrochim. Acta A 141 (2015) 202-210; DOI: 10.1016/j. saa.2015.01.029.

18. M. S. Refat, G. G. Mohamed and A. Fathi, Spectrophotometric determination of allopurinol drug in tablets: Spectroscopic characterization of the solid CT complexes, Bull. Korean Chem. Soc. 31 (2010) 1535-1542; DOI: 10.5012/bkcs.2010.31.6.1535.

19. M. Manikandan, T. Mahalingam, Y. Hayakawa and G. Ravi, Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts, Spectrochim. Acta A 101 (2013) 178-183; DOI: 10.1016/j.saa.2012.08.086.

20. I. A. Darwish, J. M. Alshehri, N. Z. Alzoman, N. Y. Khalil and H. M. Abdel-Rahman, Chargetransfer reaction of 1,4-benzoquinone with crizotinib: Spectrophotometric study, computational molecular modeling and use in development of microwell assay for crizotinib, Spectrochim. Acta A 131 (2014) 347-354; DOI: 10.1016/j.saa.2014.04.099.

21. H. M. Elqudaby, G. G. Mohamed and G. M. G. El-Din, Analytical studies on the charge transfer complexes of loperamide hydrochloride and trimebutine drugs. Spectroscopic and thermal characterization of CT complexes, Spectrochim. Acta A 129 (2014) 84-95; DOI: 10.1016/j.saa.2014.02.110.

22. M. S. Refat, L. A. Ismail and A. M. A. Adam, Shedding light on the photostability of two intermolecular charge-transfer complexes between highly fluorescent bis-1,8-naphthalimide dyes and some π-acceptors: A spectroscopic study in solution and solid states, Spectrochim. Acta A 134 (2015) 288-301; DOI: 10.1016/ j.saa.2014.06.107.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 143 143 16
PDF Downloads 60 60 6