Ionophore-based potentiometric PVC membrane sensors for determination of phenobarbitone in pharmaceutical formulations

Open access

Abstract

The fabrication and development of two polyvinyl chloride (PVC) membrane sensors for assaying phenobarbitone sodium are described. Sensors 1 and 2 were fabricated utilizing β- or γ-cyclodextrin as ionophore in the presence of tridodecylmethylammonium chloride as a membrane additive, and PVC and dioctyl phthalate as plasticizer. The analytical parameters of both sensors were evaluated according to the IUPAC guidelines. The proposed sensors showed rapid, stable anionic response (-59.1 and -62.0 mV per decade) over a relatively wide phenobarbitone concentration range (5.0 × 10-6-1 × 10-2 and 8 × 10-6-1 × 10-2 mol L-1) in the pH range of 9-11. The limit of detection was 3.5 × 10-6 and 7.0 × 10-6 mol L-1 for sensors 1 and 2, respectively. The fabricated sensors showed high selectivity for phenobarbitone over the investigated foreign species. An average recovery of 2.54 μg mL-1 phenobarbitone sodium was 97.4 and 101.1 %, while the mean relative standard deviation was 3.0 and 2.1 %, for sensors 1 and 2, respectively. The results acquired for determination of phenobarbitone in its dosage forms utilizing the proposed sensors are in good agreement with those obtained by the British Pharmacopoeial method.

1. Martindale: The Complete Drug Reference, 32nd ed. (Ed. K. Parfitt), Pharmaceutical Press, London 1999.

2. N. B. Ilangaratne, N. N. Mannakkara, G. S. Bell and J. W. Sander, Phenobarbital: missing in action, Bull.World Health Org. 90 (2012) 871A-871A; DOI: 10.2471/BLT.12.113183.

3. M. J. Brodie and P. Kwan, Current position of phenobarbital in epilepsy and its future, Epilepsia 53 (2012) 40-46; DOI: 10.1111/epi.12027.

4. A. El-Gindy, HPLC and chemometric assisted spectrophotometric methods for simultaneous determination of diprophylline, phenobarbitone and papaverine hydrochloride, Farmaco 60 (2005) 745-753; DOI: 10.1016/j.farmac.2005.06.002.

5. X. Li, L. Niu, X. He and Z. Song, Determination of phenobarbital in human urine and serum using flow injection chemiluminescence, Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 5 (2011) 184-187; DOI: 10.1134/S1990750811020077.

6. C. M. Monzón, M. R. Delfino, Jr., M. del C. Sarno and, M. R. Delfino, Phenobarbital in pharmaceutical tablets by modified conductimetrical analysis, J. Arg. Chem. Soc. 96 (2008) 101-110.

7. J. B. Raoof, M. Baghayeri and R. Ojani, A high sensitive voltammetric sensor for qualitative and quantitative determination of phenobarbital as an antiepileptic drug in presence of acetaminophen, Colloid Surface B 95 (2012) 121-128; DOI: 10.1016/j.colsurfb.2012.02.038.

8. M. Vosough, S. Ghafghazi and M. Sabetkasaei, Chemometrics enhanced HPLC-DAD performance for rapid quantification of carbamazepine and phenobarbital in human serum samples, Talanta 119 (2014) 17-23; DOI: 10.1016/j.talanta.2013.10.026.

9. A. Serralheiro, G. Alves, A. Fortuna, M. Rocha and A. Falcão, First HPLC-UV method for rapid and simultaneous quantification of phenobarbital, primidonephenytoin, carbamazepine, carbamazepine-10, 11-epoxide, 10,11-trans-dihydroxy-10,11-dihydrocarbamazepine, lamotrigine, oxcarbazepine and licarbazepine in human plasma, J. Chromatogr. B 925 (2013) 1-9; DOI: 10.1016/j. jchromb.2013.02.026.

10. T. Villén and I. Petters, Analysis of barbiturates in plasma and urine using gas chromatography without prior derivatization, J. Chromatogr. A 258 (1983) 267-270; DOI: 10.1016/S0021-993(01)90686-7.

11. W. Chow and B. Caddy, Separation of underivatised barbiturates by capillary column gas chromatography: preparation of medium polar polymethylsiloxane columns to optimize selectivity, J. Chromatogr. A 318 (1985) 255-268; DOI: 10.1016/S0021-9673(01)90686-7

12. H. Zhao, L. Wang, Y. Qiu, Z. Zhou, X. Li and W. Zhong, Simultaneous determination of three residual barbiturates in pork using accelerated solvent extraction and gas chromatography-mass spectrometry, J. Chromatog. B 840 (2006) 139-145; DOI: 10.1016/j.jchromb.2006.05.002.

13. M. Iwai, H. Hattori, T. Arinobu, A. Ishii, T. Kumazawa, H. Noguchi, H. Noguchi, O. Suzuki and H. Seno, Simultaneous determination of barbiturates in human biological fluids by direct immersion solid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. B 806 (2004) 65-73; DOI: 10.1016/j.jchromb.2006.05.002.

14. A. Kadi, M. Hefnawy, S. Julkhuf, M. Abounassif, G. Mostafa, M. G. Kassem, S. Attia and A. Al- Ghamdi, Sample stacking microemulsion electrokinetic capillary chromatography induced by reverse migrating pseudostationary phase for the quantification of phenobarbital and its p-hydroxyphenobarbital metabolite in rat urine, Analyst 136 (2011) 2858-2865; DOI. 10.1039/C0AN00768D.

15. M. T. Ragab, M. K. A. El-Rahman, N. K. Ramadan, N. A. El-Ragehy and B. A. El-Zeany, Novel potentiometric application for the determination of pantoprazole sodium and itopride hydrochloride in their pure and combined dosage form, Talanta 138 (2015) 28-35; DOI: 10.1016/j.talanta.2015.01.045.

16. M. Khater, H. Hassib, Y. Issa and S. Mohammed, Surface morphology changes of polymer membrane and carbon paste sertraline sensors, Talanta 134 (2015) 546-553; DOI: 10.1016/j.talanta.2014.11.018.

17. M. M. Hefnawy, A. M. Homoda, M. A. Abounassif, A. M. Alanazi, A. Al-Majed and G. A. Mostafa, Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors, Chem. Cent. J. 8 (2014) 59; DOI: 10.1186/s13065-014-0059-y.

18. J. L. Lima, M. C. B. Montenegro and A. R. Da Silva, A phenobarbital ion-selective electrode without an inner reference solution, and its application to pharmaceutical analysis, J. Pharm. Biomed. Anal. 8 (1990) 701-704; DOI: 10.1016/0731-7085(90)80106-Y.

19. H. AlRabiah, M. A. Abounassif, A. Al-Majed and G. A. E. Mostafa, Comparative investigation of β- and γ-cyclodextrin as ionophores in potentiometric based sensors for naltrexone, Int. J. Electrochem. Sci. 11 (2016) 4930-4942; DOI: 10.20964/2016.06.10.

20. K.-H. Frömming and J. Szejtli, Cyclodextrins in Pharmacy, Springer Science & Business Media, Budapest-Berlin 1993.

21. R. Challa, A. Ahuja, J. Ali and R. Khar, Cyclodextrins in drug delivery: an updated review, AAPS PharmSciTech. 6 (2005) E329-E357.

22. S. S. Hassan and S. A. Marzouk, A novel ferroin membrane sensor for potentiometric determination of iron, Talanta 41 (1994) 891-899; DOI: 10.1016/0039-9140(94)E0042-P.

23. A. Carggs, G. Moody and J. Tomas, PVC matrix membrane ion-selective electrodes, J. Chem. Educ. 51 (1974) 541-544; DOI: 10.1021/ed051p541.

24. R. P. Buck and E. Lindner, Recommendations for nomenclature of ion selective electrodes (IUPAC Recommendations), Pure Appl. Chem. 66 (1994) 2527-2536; DOI: 10.1351/pac199466122527.

25. A. Lopata, F. Darvas, Á. Stadler‐Szóke and J. Szejtli, Quantitative structure-stability relationships among inclusion complexes of cyclodextrins I: Barbituric acid derivatives, J. Pharm. Sci. 74 (1985) 211-213; DOI: 10.1002/jps.2600740223.

26. K. Csabai, T. Cserháti and J. Szejtli, Interaction of some barbituric acid derivatives with hydroxypropyl-β-cyclodextrin, Int. J. Pharm. 91 (1993) 15-22; DOI: 10:1016/0378-5173(93)90416-D.

27. R. Eugster, P. M. Gehrig, W. E. Morf, U. E. Spichiger and W. Simon, Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes, Anal. Chem. 63 (1991) 2285-2289; DOI: 10.1021/ac00020a017.

28. E. Bakker and E. Pretsch, Modern potentiometry, Angew. Chem. Int. Ed. 46 (2007) 5660-5668; DOI: 10.1002/anie.200605068.

29. M. B. Gholivand, M. Mohammadi, M. Khodadadian and M. K. Rofouei, Novel platinum (II) selective membrane electrode based on 1,3-bis(2-cyanobenzene) triazene, Talanta 78 (2009) 922-928; DOI: 10.1016/j.talanta.2008.12.070.

30. A. C. Moffat, M. D. Osselton, B. Widdop and J. Watts (Eds.), Clarke’s analysis of Drugs and Poisons, in Pharmaceuticals, Body Fluids and Postmortem Material, Vol. 1., Pharmaceutical Press, London 2004.

31. Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohda and S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report), Pure Appl. Chem. 72 (2000) 1851-2082; DOI: 10.1351/pac200072101851.

32. British Pharmacopoeia, Stationery Office, London 2005, Volume II, pp. 1550.

33. J. N. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th ed., Pearson Education Limited , Harlow (UK) 2005.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information


IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 218 218 22
PDF Downloads 103 103 9