Release of selected amino acids from zinc carriers

Open access


The paper deals with the results of an investigation of the release of selected amino acids (histidine, tryptophan, tyrosine) from model suspensions prepared by co-precipitation with zinc chloride. It has been proven that the influence of the Zn(II)/amino acid molar ratio on dissolution profiles of the tested amino acids and dissolution half-life (t1/2) of histidine or tryptophan is significant. The amount of amino acid in the dispersed phase (supporting dose) is a determinant of the amino acid release profile. There is a minimal supporting dose (30.0 μmol of histidine or 17.4 μmol of tryptophan) that provides release of similar amounts of amino acid (4.1–4.6 μmol of histidine or 8.7–9.9 μmol of tryptophan) after the same time intervals. The tyrosine release profiles follow first order kinetics since the supporting dose (0.9–11.2 μmol) is limited by the tyrosine low solubility in water.

1. U. Gietz, T. Arvinte, M. Häner, U. Aebi and H. P. Merkle, Formulation of sustained release aqueous Zn-hirudin suspensions, Eur. J. Pharm. Sci. 11 (2000) 33–41; DOI: 10.1016/S0928-0987(00)00072-5.

2. K. Shi, F. Cui, H. Bi, Y. Jang, H. Shi and T. Song, Metal ions guided self-assembly of therapeutic proteins for controllable release: from random to ordered aggregation, Pharm. Res. 30 (2013) 269–279; DOI: 10.1007/s11095-012-0871-9.

3. B. Dolińska and F. Ryszka, Pulsatile and moderated release of dalareline from Zn(II) complexes in the form of suspension, Boll. Chim. Farmac. 142 (2003) 10–13.

4. T. Biswick, D. H. Park, Y. G. Shul, J. H. Choy, p-Coumaric acid-zinc basic salt nanohybrid for controlled release and sustained antioxidant activity, J. Phys. Chem. Solid. 71 (2010) 647–649; DOI: 10.1016/j.jpcs.2009.12.058.

5. A. U. Kura, S. H. Hussein Al-Ali, M. Z. Hussein, S. Fakurazi and P. Arulselvan, Development of a controlled release anti-parkinsonian nanodelivery system using levodopa as the active agent, Int. J. Nanomed. 8 (2013) 1103–1110; DOI: 10.2147/IJN.S39740.

6. C. G. Carbajal Arízaga, Intercalation studies of zinc hydroxide chloride: ammonia and amino acids, J. Solid State Chem. 185 (2012) 150–155; DOI: 10.1016/j.jssc.2011.11.016.

7. Á. Fudala, I. Pálinkó and I. Kiricsi, Preparation and characterization of hybrid organic-inorganic composite materials using the amphoteric property of amino acids: amino acid intercalated layered double hydroxide and montmorillonite, Inorg. Chem. 38 (1999) 4653–4658; DOI: 10.1021/ic981176t.

8. B. Dolińska and F. Ryszka, The influence of physicochemical properties of amino acids on their release from the Zn(II)-amino acid complexes in suspension, Boll. Chim. Farm. 141 (2002) 218–222.

9. B. Dolińska, The properties of solid Zn(II)-amino acid complexes in the form of suspensions, Il Farmaco 56 (2001) 737–740.

10. S. Jose, J. F. Fangueiro, J. Smitha, T. A. Cinu, A. J. Chacko, K. Premaletha and E. B. Souto, Predictive modeling of insulin release profile from cross-linked chitosan microspheres, Eur. J. Med. Chem. 60 (2013) 249–253; DOI: 10.1016/j.ejmech.2012.12.011.

11. P. Costa and J. M. Sousa Lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci. 13 (2001) 123–133; DOI: 10.1016/S0928-0987(01)00095-1.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 132 18
PDF Downloads 61 61 10