Preparation and investigation of mefenamic acid – polyethylene glycol – sucrose ester solid dispersions

Open access

Abstract

Mefenamic acid (MA) is a widely used non-steroidal antiinflammatory (NSAID) drug. The adverse effects typical of NSAIDs are also present in the case of MA, partly due to its low water solubility. The aim of this study was to increase the water solubility of MA in order to influence its absorption and bioavailability. Solid dispersions of MA were prepared by the melting method using polyethylene glycol 6000 and different types (laurate, D-1216; palmitate, P-1670; stearate, S-1670) and amounts of sucrose esters as carriers. The X-ray diffraction results show that MA crystals were not present in the products. Dissolution tests carried out in artificial intestinal juice showed that the product containing 10 % D-1216 increased water solubility about 3 times. The apparent permeability coefficient of MA across human Caco-2 intestinal epithelial cell layers was high and, despite the difference in solubility, there was no further increase in drug penetration in the presence of the applied additives.

1. S. C. Sweetman (Ed.), Martindale: The Complete Drug Reference, 36th ed., Pharmaceutical Press, London 2009, p. 80.

2. M. Batt, Non-coeliac flat jejunal mucosa, Gut 30 (1989) 67-68.

3. T. Hamaguchi, D. Shinkuma, Y. Yamanaka and N. Mizuno, Bioavailability of mefenamic acid: influence of food and water intake, J. Pharm. Sci. 75 (1986) 891-893.

4. J. L. Wallace, Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy, World J. Gastroenterol. 19 (2013) 1861-1876; DOI: 10.3748/wjg.v19.i12.1861.

5. D. V. Derle, M. Bele and N. Kasliwal, In vitro and in vivo evaluation of mefenamic acid and its complexes with b-cyclodextrin and HP-b-cyclodextrin, Asian J. Pharm. 2 (2008) 30-34; DOI: 10. 4103/0973-8398.41562.

6. G. L. Amidon, H. Lennernas, V. P. Shah and J. R. Crison, A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. 12 (1995) 413-420.

7. D. Mudit, Y. Bhardwaj, P. K. Keshavarao and P. Selvam, Enhancing solubility and dissolution of mefenamic acid by freeze drying using b-cyclodextrin, Int. Res. J. Pharm. 2 (2011) 146-150; DOI: http://dx.doi.org/10.1590/S1984-82502011000400011.

8. U. Domanska, A. Pelczara and A. Pobudowska, Effect of 2-hydroxypropyl-b-cyclodextrin on solubility of sparingly soluble drug derivatives of anthranilic acid, Int. J. Mol. Sci. 12 (2011) 2383-2394; DOI: 10.3390/ijms12042383.

9. I. Fülöp, Á. Gyéresi and Ș. Hobai, Characterisation of the interaction between fenamates and hydroxy- propyl-b-cyclodextrin, Bull. Med. Sci. 83 (2010) 58-62.

10. K. R. Rao, M. V. Nagabhushanam and K. P. Chowdary, In vitro dissolution studies on solid dispersions of mefenamic acid, Indian J. Pharm. Sci. 73 (2011) 243-247; DOI: 10.4103/0250-474X.91575.

11. G. Owusu-Ababio, N. K. Ebube, R. Reams and M. Habib, Comparative dissolution studies for mefenamic acid-polyethylene glycol solid dispersion systems and tablets, Pharm. Dev. Technol. 3 (1998) 405-412; DOI: 10.3109/10837459809009868.

12. A. Dahan A and J. M. Miller, The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs, AAPS J. 14 (2012) 244-251; DOI: 10.1208/ s12248-012-9337-6.

13. A. Beig, R. Agbaria and A. Dahan, Oral delivery of lipophilic drugs: The tradeoff between solubility increase and permeability decrease when using cyclodextrin-based formulations, Plos One 8 (2013) e68237; DOI: 10.1371/journal.pone.0068237.

14. G. E. Amidon, W. I. Higuchi and N. F. Ho, Theoretical and experimental studies of transport of micelle-solubilized solutes, J. Pharm. Sci. 71 (1982) 77-84.

15. J. M. Miller, A. Beig, R. A. Carr, G. K. Webster and A. Dahan, The solubility-permeability interplay when using cosolvents for solubilization: revising the way we use solubility-enabling formulations, Mol. Pharm. 9 (2012) 581-590; DOI: 10.1021/mp200460u.

16. A. Beiq, J. M. Miller and A. Dahan, Accounting for the solubility-permeability interplay in oral formulation development for poor water solubility drugs: the effect of PEG-400 on carbamazepine absorption, Eur. J. Pharm. Biopharm. 81 (2012) 386-391; DOI: 10.1016/j.ejpb.2012.02.012.

17. L. Kiss, E. Hellinger, A. M. Pilbat, A. Kittel, Z. Török, A. Füredi, G. Szakács, S. Veszelka, P. Sipos, B. Ózsvári, L. G. Puskás, M. Vastag, P. Szabó-Révész and M. A. Deli, Sucrose esters increase drug penetration, but do not inhibit P-glycoprotein in Caco-2 intestinal epithelial cells, J. Pharm. Sci. 103 (2014) 3107-3119; DOI: 10.1002/jps.24085.

18. A. Szűts and P. Szabó-Révész, Sucrose esters as natural surfactants in drug delivery systems - a mini-review, Int. J. Pharm. 433 (2012) 1-9; DOI: 10.1016/j.ijpharm.2012.04.076.

19. T. Hladon, J. Pawlaczyk and B. Szafran, Stability of mefenamic acid in the inclusion complex with b-cyclodextrin in the solid phase, J. Incl. Phenom. Macrocycl. Chem. 35 (1999) 497-506; DOI: 10.1023/ A:1008048612736.

20. Ryoto Sugar Ester Technical Information, Ryoto Sugar Ester (Food grade)/ Surfhope™ SE Pharma, Mitsubishi-Kagaku Foods Corporation; http://www.mfc.co.jp/english; last access date May 25, 2015.

21. A. Szűts, E. Pallagi, G. Regdon, Jr., Z. Aigner and P. Szabó-Révész, Study of thermal behaviour of sugar esters, Int. J. Pharm. 336 (2007) 199-207; DOI: 10.1016/j.ijpharm.2006.11.053.

22. A. Szűts, Zs. Makai, R. Rajkó and P. Szabó-Révész, Study of the effects of drugs on the structures of sucrose esters and the effects of solid-state interactions on drug release, J. Pharm. Biomed. Anal. 48 (2008) 1136-1142; DOI: 10.1016/j.jpba.2008.08.028.

23. European Pharmacopoeia 8th ed., Council of Europe, Strasbourg 2013, pp. 288-295.

24. Y. Zhang, M. Huo, J. Zhou, A. Zou, W. Li, C. Yao and S. Xie, DDSolver: an add-in program for modeling and comparison of drug dissolution profiles, AAPS J. 12 (2010) 263-271; DOI: 10.1208/ s12248-010-9185-1.

25. P. Costa and J. M. Sousa Lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci. 13 (2001) 123-133; DOI: 10.1016/S0928-0987(01)00095-1.

26. I. Fülöp, Á. Gyéresi, M. A. Deli, L. Kiss, M. D. Croitoru, P. Szabó-Révész and Z. Aigner, Ternary solid dispersions of oxicams: Dissolution and permeability study, Farmacia 63 (2015) 286-295.

27. M. Dixit, A. Kini and P. K. Kulkarni, Enhancing the dissolution of polymorphs I and II of mefenamic acid by spray drying, Turk. J. Pharm. Sci. 9 (2012) 13-26.

28. S. Romero, B. Escalera and P. Bustamante, Solubility behavior of polymorphs I and II of mefenamic acid in solvent mixtures, Int. J. Pharm. 178 (1999) 193-202.

29. S. G. Vijaya Kumar and D. N. Mishra, Preparation, characterization and in vitro dissolution studies of solid dispersion of meloxicam with PEG 6000, Yakugaku Zasshi (J. Pharm. Sci. Japan) 126 (2006) 657-664.

30. H. Lokhandwala, A. Deshpande and S. Deshpande, Kinetic modelling and dissolution profiles comparison: an overview, Int. J. Pharm. Biol. Sci. 4 (2013) 728-737.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information


IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 225 225 22
PDF Downloads 82 82 11