In vitro antioxidant activity of stem bark of Trichilia catigua Adr. Juss

Open access

Antioxidant activity of the ethanolic extract and fractions from the stem bark of T. catigua was investigated. IC50 (for DPPH scavenging) by T. catigua varied from 9.17 ± 0.63 to 76.42 ± 5.87 mg mL-1 and total phenolic content varied from 345.63 ± 41.08 to 601.27 ± 42.59 mg GAE g-1 of dry extract. Fe2+-induced lipid peroxidation was significantly reduced by the ethanolic extract and fractions. Mitochondrial Ca2+-induced dichlorofluorescein oxidation was significantly reduced by the ethanolic extract in a concentration-dependent manner. Ethanolic extract reduced mitochondrial Dym only at high concentrations (40-100 mg mL-1), which indicates that its toxicity does not overlap with its antioxidant effects. Results suggest involvement of antioxidant activities of T. catigua in its pharmacological properties.

1. S. Hasani-Ranjbar, B. Larijani and M. Abdollahi, A systematic review of the potential herbal sources of future drugs effective in oxidant-related diseases, Inflamm. Allergy Drug Targets 8 (2009) 2-10.

2. C. H. Oliveira, M. E. A. Moraes, M. O. Moraes, F. A. F. Bezerra, E. Abib and G. De Nucci, Clinical toxicology study of an herbal medicinal extract of Paullinia cupana, Trichilia catigua, Ptychopetalum olacoides and Zingiber officinalis (Catuama) in healthy volunteers, Phytother. Res. 19 (2005) 54-57; DOI: 10.1002/ptr.1484.

3. M. G. Pizzolatti, A. F. Venson, A. S. Júnior, E. F. A. Smânia and R. Braz-Filho, Two epimeric flavalignans from Trichilia catigua (Meliaceae) with antimicrobial activity, Z. Naturforsch. C 57 (2002) 483-488.

4. W. Tang, H. Hioki, K. Harada, M. Kubo and Y. Fukuyama, Antioxidant phenylpropanoid-substituted epicatechins from Trichilia catigua, J. Nat. Prod. 70 (2007) 2010-2013; DOI: 10.1021/np0703895.

5. S. Venkatesh, M. Deecaraman, R. Kumar, M. B. Shamsi and R. Dada, Role of reactive oxygen species in the pathogenesis of mitochondrial DNA (mtDNA) mutation in male infertility, Indian J. Med. Res. 129 (2009) 127-137.

6. R. L. Puntel, D. H. Roos, D. Grotto, S. C. Garcia, C. W. Nogueira and J. B. Rocha, Antioxidant properties of Krebs cycle intermediates against malonate prooxidant activity in vitro: a comparative study using the colorimetric method and HPLC analysis to determine malondialdehyde in rat brain homogenates, Life Sci. 81 (2007) 51-62; DOI: 10.1016/j.lfs.2007.04.023.

7. A. H. Laghari, S. Memon, A. Nelofar, K. M. Khan and A. Yasmin, Determination of free phenolic acids and antioxidant activity of methanolic extracts obtained from fruits and leaves of Chenopodium album, Food. Chem. 126 (2011) 1850-1855; DOI: 10.1016/j.foodchem.2010.11.165.

8. R. L. Puntel, D. H. Roos, V. Folmer, C. W. Nogueira, A. Galina, M. Aschner and J. B. T. Rocha, Mitochondrial dysfunction induced by different organochalchogens is mediated by thiol oxidation and is not dependent on the classical mitochondrial permeability transition pore opening, Toxicol. Sci. 117 (2010) 133-143; DOI: 10.1093/toxsci/kfq185.

9. O. H. Lowry, N. J. Rosebrough, A. L. Farr and R. J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193 (1951) 265-275.

10. Y. S. Velioglu, G. Mazza, L. Gao and B. D. Oomah, Antioxidant activity and total phenolics in selected fruits, vegetables and grain products, J. Agric. Food Chem. 46 (1998) 4113-4117; DOI: 10.1021/jf9801973.

11. C. Nencini, A. Menchiari, G. G. Franchi and L. Micheli, In vitro antioxidant activity of some Italian Allium species, Plant Food Hum. Nutr. 66 (2011) 11-16; DOI: 10.1007/s11130-010-0204-2.

12. A. A. Boligon, P. R. Pereira, A. C. Feltrin, M. M. Machado, V. Janoyik, J. B. T. Rocha and M. L. Athayde, Antioxidant activities of flavonol derivatives from the leaves and stem bark of Scutia buxifolia Reiss, Biores. Technol. 100 (2009) 6592-6598; DOI: 10.1016/j.biortech.2009.03.091.

13. H. Kiliçgün and D. Altiner, Correlation between antioxidant effect mechanisms and polyphenol content of Rosa canina, Pharmacogn. Mag. 23 (2010) 238-241; DOI: 10.4103/0973-1296.66943.

14. P. A. Omololu, J. B. T. Rocha and I. J. Kade, Attachment of rhamnosyl glucoside on quercetin confers potent iron-chelating ability on its antioxidant properties, Exp. Toxicol. Pathol. 63 (2011) 249-255; DOI: 10.1016/j.etp.2010.01.002.

15. M. J. Hansson, R. Månsson, S. Morota, H. Uchino, T. Kallur, T. Sumi, N. Ishii, M. Shimazu, M. F. Keep, A. Jegorov and E. Elmér, Calcium-induced generation of reactive oxygen species in brain mitochondria is mediated by permeability transition, Free Radical Biol. Med. 45 (2008) 284-294; DOI: 10.1016/j.freeradbiomed.2008.04.021.

16. C. Wagner, A. P. Vargas, D. H. Roos, A. F. Morel, M. Farina, C. W. Nogueira, M. Aschner and J. B. Rocha, Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices, Arch. Toxicol. 84 (2010) 89-97; DOI: 10.1007/s00204-009-0482-3.

17. F. Sedlic, A. Sepac, D. Pravdic, A. K. S. Camara, M. Bienengreber, A. K. Brzezinska, T. Wakatsuki and Z. J. Bosnjak, Mitochondrial depolarization underlies delay in permeability transition by preconditioning with isoflurane: roles of ROS and Ca2+, Am. J. Physiol. Cell Physiol. 299 (2010) C506-C515; DOI: 10.1152/ajpcell.00006.2010.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information


IMPACT FACTOR 2018: 1,405
5-year IMPACT FACTOR: 1,701

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.314
Source Normalized Impact per Paper (SNIP) 2018: 0.637

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 230 171 13
PDF Downloads 96 82 8