A study of rivastigmine liposomes for delivery into the brain through intranasal route

Open access

A study of rivastigmine liposomes for delivery into the brain through intranasal route

The present study is mainly aimed at delivering a drug into the brain via the intranasal route using a liposomal formulation. For this purpose, rivastigmine, which is used in the management of Alzheimer's disease, was selected as a model drug. Conventional liposomes were formulated by the lipid layer hydration method using cholesterol and soya lecithin as lipid components. The concentration of rivastigmine in brain and plasma after intranasal liposomes, free drug and per oral administration was studied in rat models. A significantly higher level of drug was found in the brain with intranasal liposomes of rivastigmine compared to the intranasal free drug and the oral route. Intranasal liposomes had a longer half-life in the brain than intranasally or orally administered free drug. Delivering rivastigmine liposomes through the intranasal route for the treatment of Alzheimer's disease might be a new approach to the management of this condition.

Y. W. Chien and Y. Chang, Historical Developments of Transnasal Systemic Medications, in Transnasal Systemic Medications: Fundamentals, Developmental Concepts and Biomedical Assessments (Ed. Y. W. Chien), Elsevier, Amsterdam 1985, pp. 1-100.

A. A. Hussain, Intranasal drug delivery, Adv. Drug Deliv. Rev. 29 (1998) 39-4; DOI: 10.1016/S0169-409X (97)00060-4.

N. S. Barakat, S. A. Omar and A. A. E. Ahmed, Carbamazepine uptake into rat brain following intra-olfactory transport, J. Pharm. Pharmacol. 58 (2005) 63-72; DOI: 10.1211/jpp.58.1.0008.

M. Dahlin, U. Bergman, B. Jansson, E. Bjork and E. Brittebo, Transfer of dopamine in the olfactory pathway following nasal administration in mice, Pharm. Res. 17 (2000) 737-742; DOI: 10.1023/ A:1007542618378.

J. Henriksson and H. Tjalve, Uptake of inorganic mercury in the olfactory bulbs via olfactory pathways in rats, Environ. Res. 77 (1998) 130-140; DOI:10.1006/enrs.1997.3817.

K. J. Chou and M. D. Donovan, Lidocaine distribution into the CNS following nasal and arterial delivery: a comparision of local sampling and microdialysis techniques, Int. J. Pharm. 171 (1998) 53-61; DOI: 10.1016/S0378-5173(98)00170-7s.

C. Eriksson, U. Bergman, A. Franzen, M. Sjoblom and E. B. Brittebo, Transfer of some carboxylic acids in the olfactory system following intranasal administration, J. Drug Target. 7 (1997) 131-142.

W. H. Prey, J. Liu, X. Chen, R. G. Thorne, J. R. Fawcett, T. A. Ala and Y. E. Rahman, Delivery of 125I-NGF to the brain via the olfactory route, Drug Deliv. 4 (1997) 87-92; DOI: 10.3109/10717549709051878.

R. G. Thorne, C. R. Emory, T. A. Ala and W. H. Frey, Quantitative analysis of the olfactory pathway for drug delivery to the brain, Brain Res. 692 (1995) 278-282; DOI: 10.1016/0006-8993(95) 00637-6.

L. Illum, Transport of drugs from the nasal cavity to the central nervous system, Eur. J. Pharm. Sci. 11 (2000)1-18; DOI: 10.1016/S0928-0987(00)00087-7.

J. L. Cummings and G. Cole, Alzheimer disease, JAMA 287 (2002) 2335-2338; DOI: 10.1001/jama.287.18.2335.

R. J. Polinsky, Clinical pharmacology of rivastigmine: A new generation acetyl choline esterase inhibitor for the treatment of Alzheimer's disease, Clin. Ther. 20 (1998) 634-637; DOI: 10.1016/S0149-2918(98)80127-6.

K. Muramatsu, Y. Maitani, K. Takayama and T. Nagai, The relationship between the rigidity of the liposomal membrane and the absorption of insulin after nasal administration of liposomes modified with an enhancer containing insulin in rabbits, Drug Dev. Ind. Pharm. 25 (1999) 1099-1105; DOI: 10.1081/DDC-100102275.

S. L. Law, K. J. Huang and H. Y. Chou, Preparation of desmopressin-containing liposomes for intranasal delivery, J. Control. Rel. 70 (2001) 375-382; DOI: 10.1016/S0168-3659(00)00369-2.

K. Iwanaga, S. Matsumoto, K. Morimoto, M. Kakemi, S. Yamashita and T. Kimura, Usefulness of liposomes as an intranasal dosage formulation for topical drug application, Biol. Pharm. Bull. 23 (2000) 323-326.

K. A. Edwards, and A. J. Baeumner, Analysis of liposomes, Talanta 68 (2006) 1432-1441; DOI: 10.1016/j.talanta.2005.08.031.

E. Maria, B. Estradaa, M. Foldvari, M. Snider and K. Harding, Intranasal immunization with liposome-formulated Yersinia pestis vaccine enhances mucosal immune responses, Vaccine 18 (2000) 2203-2211; DOI: 10.1016/S0264-410X(00)00019-0.

United States Pharmacopoeia 23, National Formulary 18, USP Convention, Rockville, 2005.

B. J. Balin, R. D. Broadwell, M. Salcman and M. El-Kalliny, Avenues for entry of peripherally administered protein to the central nervous system in mouse, rat, and squirrel monkey, J. Comp. Neurol. 251 (1986) 260-280; DOI: 10.1002/cne.902510209.

M. P. van den Berg, J. Coos Verhoef, S. G. Romeijn and F. W. H. M. Merkus, Uptake of estradiol or progesterone into the CSF following intranasal and intravenous delivery in rats, Eur. J. Pharm. Sci. 58 (2004) 131-135; DOI: 10.1016/j.ejpb.2004.02.010.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 651 650 63
PDF Downloads 242 241 14