A sensitive spectrophotometric method for the determination of H2-receptor antagonists by means of N-bromosuccinimide and p-aminophenol

Open access

A sensitive spectrophotometric method for the determination of H2-receptor antagonists by means of N-bromosuccinimide and p-aminophenol

A simple, accurate and sensitive spectrophotometric method for determination of H2-receptor antagonists: cimetidine (CIM), famotidine (FAM), nizatidine (NIZ), and ranitidine hydrochloride (RAN) has been fully developed and validated. The method was based on the reaction of these drugs with NBS and subsequent measurement of the excess N-bromosuccinimide by its reaction with p-aminophenol to give a violet colored product (λmax at 552 nm). Decrease in the absorption intensity (ΔA) of the colored product, due to the presence of the drug, was correlated with its concentration in the sample solution. Different variables affecting the reaction were carefully studied and optimized. Under optimal conditions, linear relationships with good correlation coefficients (0.9988--0.9998) were found between ΔA values and the corresponding concentrations of the drugs in a concentration range of 8--30, 6--22, 6--25, and 4--20 μg mL-1 for CIM, FAM, NIZ, and RAN, respectively. Limits of detection were 1.22, 1.01, 1.08, and 0.74 μg mL-1 for CIM, FAM, NIZ, and RAN, respectively. The method was validated in terms of accuracy, precision, ruggedness, and robustness; the results were satisfactory. The proposed method was successfully applied to the analysis of the above mentioned drugs in bulk substance and in pharmaceutical dosage forms; percent recoveries ranged from 98.5 ± 0.9 to 102.4 ± 0.8% without interference from the common excipients. The results obtained by the proposed method were comparable with those obtained by the official methods.

N. D. Yeomans, Management of peptic ulcer disease not related to Helicobacter, J. Gastroenterol. Hepatol.17 (2002) 488-494; DOI: 10.1046/j.1440-1746.2002.02726.x.

K. G. Kumar and L. Karpagaselvi, Determination of cimetidine in pure form and in dosage forms using N,N-dibromodimethylhydantoin, Analyst119 (1994) 1375-1376; DOI: 10.1039/AN9941901375.

M. Ayad, A. Shalaby and E. J. M. Hisham, Potentiometric determination of famotidine in pharmaceutical formulations, J. Pharm. Biomed. Anal.29 (2002) 247-254; DOI: 10.1016/S0731-7085(02)00024-9.

J. Novakovic, High-performance thin-layer chromatography for the determination of ranitidine hydrochloride and famotidine in pharmaceuticals, J. Chromatogr. A.846 (1999) 193-198; DOI: 10.1016/S0021-9673(99)00510-5.

C. Ho, H. M. Huang, S. Y. Hsu, C. Y. Shaw and B. L. Chang, Simultaneous high-performance liquid chromatographic analysis for famotidine, ranitidine HCl, cimetidine, and nizatidine in commercial products, Drug Dev. Ind. Pharm.25 (1999) 379-385; DOI: 10.1081/DDC-100102186.

A. Zarghi, A. Shafaati, S. M. Foroutan and A. Khoddam, Development of a rapid HPLC method for determination of famotidine in human plasma using a monolithic column, J. Pharm. Biomed. Anal.39 (2005) 677-680; DOI: 10.1016/j.jpba.2005.03.029.

J. W. Luo and H. H. Q. Chen, Determination of cimetidine in human plasma by use of coupled-flow injection, solid-phase extraction, and capillary zone electrophoresis, Chromatographia53 (2001) 295-300; DOI:10.1007/BF02490427.

S. A. Wring, K. E. Kilpatrick, J. T. Hutchins, S. M. Witherspoon, B. Ellis, W. Jenner and C. Serabjit-Singh, Shorter development of immunoassay for drugs: application of the novel RIMMS technique enables rapid production of monoclonal antibodies to ranitidine, J. Pharm. Biomed. Anal.19 (1999) 695-707; DOI: 10.1016/S0731-7085(98)00296-9.

M. M. Badair, M. A. Korany, M. A. Elsayed and O. T. Fahmy, Spectrofluorimetric determination of three pharmaceutical thiocompounds and allopurinol using mercurochrome, Spectrosc. Lett.23 (1990) 161-173; DOI: 10.1080/00387019008054044.

A. El-Bayomi, A. El-Shanawany, A. El- Sadek and A. Abd El-Sattar, Synchronous spectrofluorimetric determination of famotidine, fluconazole and ketoconazole in bulk powder and in pharmaceutical dosage forms, Spectrosc. Lett.30 (1997) 25-46; DOI: 10.1080/00387019708002587.

F. A. El-Yazbi, A. A. Gazy, H. M. Mahgoub, M. A. El-Sayed and R. M. Youssef, Spectrophotometric and titrimetric determination of nizatidine in capsules, J. Pharm. Biomed. Anal.31 (2003) 1027-1034; DOI: 10.1016/S0731-7085(02)00699-4.

A. S. Amin, I. S. Ahmed, H. A. Dessouki and E. A. Gouda, Utility of oxidation-reduction reaction for the determination of ranitidine hydrochloride in pure form in dosage forms and in the presence of its oxidative degradates, Spectrochim. A Mol. Biomol. Spectrosc.59 (2003) 695-703; DOI: 10.1016/S1386-1425(02)00226-3.

A. S. Amin, S. A. Shama, I. S. Ahmed and E. A. Gouda, Spectrophotometric determination of famotidine through oxidation with N-bromosuccinimide and cerric sulphate, Anal. Lett.35 (2002) 1851-1862; DOI: 10.1081/AL-120013588.

E. M. Hassan and F. Belal, Kinetic spectrophotometric determination of nizatidine and ranitidine in pharmaceutical preparations, J. Pharm. Biomed. Anal.27 (2002) 31-38; DOI: 10.1016/S0731-7085(01)00473-3.

A. Z. Abu-Zuhri, R. M. Shubietah and G. M. Badah, Extractional-spectrophotometric determination of famotidine in pharmaceutical preparations, J. Pharm. Biomed. Anal.21 (1999) 459-465; DOI: 10.1016/S0731-7085(99)00139-9.

M. S. Garcia, M. I. Albero, C. Sánchez-Pedreño and M. S. Abuherb, Spectrophotometric determination of cimetidine in pharmaceuticals and urine using batch and flow-injection methods, J. Pharm. Biomed. Anal.32 (2003) 1003-1010; DOI: 10.1016/S0731-7085(03)00202-4.

A. E. Gendy, M. G. El-Bardicy and K. M. Loutfy, Stability indicating method for the determination of nizatidine using 3-methyl-2-benzothiazolinone hydrazone, Spectrosc. Lett.34 (2001) 221-234; DOI: 10.1081/SL-100002011.

G. Saleh, Two selective spectrophotometric methods for the determination of amoxicillin and cefadroxil, Analyst121 (1996) 641-645; DOI: 10.1039/AN9962100641.

A. Krebs, B. Starczewska, H. Puzanowska-Tarasiewicz and J. Sledz, Spectrophotometric determination of olanzapine by its oxidation with N-bromosuccinimide and cerium(IV) sulfate, Anal. Sci.22 (2006) 829-833; DOI: 10.2116/analsci.22.829.

N. Rahman and S. N. Hejaz Azmi, Spectrophotometric method for the determination of verapamil hydrochloride in pharmaceutical formulations using N-bromosuccinimide as oxidant, Farmaco59 (2004) 529-536; DOI: 10.1016/j.farmac.2004.02.008.

B. G. Gowda, J. Seetharamappa and M. B. Melwanki, Indirect spectrophotometric determinaion of propranolol hydrochloride and piroxicam in pure and pharmaceutical formulations, Anal. Sci.18 (2002) 671-674; DOI: 10.2116/analsci.18.671.

H. F. Askal, I. H. Refaat, I. A. Darwish and M. A. Marzouq, Evaluation of N-bromosuccinimide as a new analytical reagent for the spectrophotometric determination of fluoroquinolone antibiotics, Chem. Pharm. Bull. (Tokyo)55 (2007) 1551-1556; DOI: 10.1248/cpb.55.1551.

F. Feigl, Spot Tests in Organic Analysis, Elsevier, Amsterdam 1966.

International Conference of Harmonization of Technical Requirements for Regulation of Pharmaceuticals for Human Use, ICH Harmonize Tripartite Guidance: Validation of Analytical Procedures: Text and Methodology Q2(R1), ICH, London 2005.

British Pharmacopoeia, Vol. I, Her Majesty's Stationery Office, London 1998.

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

Journal Information

IMPACT FACTOR 2017: 1.071
5-year IMPACT FACTOR: 1.623

CiteScore 2017: 1.46

SCImago Journal Rank (SJR) 2017: 0.362
Source Normalized Impact per Paper (SNIP) 2017: 0.642

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 248 248 29
PDF Downloads 60 60 6